咨询与建议

限定检索结果

文献类型

  • 510 篇 会议
  • 262 篇 期刊文献
  • 17 册 图书

馆藏范围

  • 789 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 480 篇 工学
    • 323 篇 计算机科学与技术...
    • 277 篇 软件工程
    • 121 篇 信息与通信工程
    • 87 篇 生物工程
    • 69 篇 光学工程
    • 68 篇 机械工程
    • 65 篇 控制科学与工程
    • 64 篇 生物医学工程(可授...
    • 37 篇 电气工程
    • 29 篇 仪器科学与技术
    • 29 篇 化学工程与技术
    • 24 篇 电子科学与技术(可...
    • 12 篇 建筑学
    • 9 篇 土木工程
    • 9 篇 安全科学与工程
    • 8 篇 交通运输工程
  • 272 篇 理学
    • 108 篇 数学
    • 95 篇 生物学
    • 91 篇 物理学
    • 34 篇 化学
    • 31 篇 统计学(可授理学、...
    • 10 篇 系统科学
  • 126 篇 管理学
    • 83 篇 图书情报与档案管...
    • 51 篇 管理科学与工程(可...
    • 18 篇 工商管理
  • 33 篇 医学
    • 31 篇 临床医学
    • 25 篇 基础医学(可授医学...
    • 21 篇 药学(可授医学、理...
  • 17 篇 艺术学
    • 17 篇 设计学(可授艺术学...
  • 14 篇 法学
    • 14 篇 社会学
  • 7 篇 经济学
  • 6 篇 教育学
  • 4 篇 文学
  • 2 篇 农学

主题

  • 100 篇 pattern recognit...
  • 92 篇 feature extracti...
  • 71 篇 image segmentati...
  • 70 篇 computer vision
  • 66 篇 handwriting reco...
  • 62 篇 character recogn...
  • 60 篇 support vector m...
  • 46 篇 training
  • 40 篇 optical characte...
  • 38 篇 shape
  • 32 篇 accuracy
  • 29 篇 histograms
  • 28 篇 databases
  • 26 篇 writing
  • 26 篇 testing
  • 21 篇 image edge detec...
  • 21 篇 text recognition
  • 19 篇 automation
  • 19 篇 image recognitio...
  • 19 篇 robustness

机构

  • 205 篇 computer vision ...
  • 42 篇 computer vision ...
  • 37 篇 university of ch...
  • 31 篇 national key lab...
  • 28 篇 shenzhen key lab...
  • 28 篇 faculty of compu...
  • 22 篇 national laborat...
  • 21 篇 siat branch shen...
  • 19 篇 shenzhen key lab...
  • 18 篇 sensetime resear...
  • 18 篇 department of st...
  • 17 篇 computer vision ...
  • 16 篇 computer vision ...
  • 13 篇 school of artifi...
  • 13 篇 shanghai artific...
  • 12 篇 computer vision ...
  • 12 篇 indian statistic...
  • 11 篇 shanghai ai labo...
  • 10 篇 school of comput...
  • 9 篇 center for resea...

作者

  • 109 篇 umapada pal
  • 100 篇 pal umapada
  • 43 篇 qiao yu
  • 38 篇 b.b. chaudhuri
  • 30 篇 michael blumenst...
  • 30 篇 palaiahnakote sh...
  • 28 篇 blumenstein mich...
  • 27 篇 shivakumara pala...
  • 22 篇 chaudhuri b.b.
  • 22 篇 u. pal
  • 18 篇 wang yali
  • 18 篇 lu tong
  • 17 篇 maier andreas
  • 17 篇 tong lu
  • 16 篇 chanda sukalpa
  • 14 篇 chaudhuri bidyut...
  • 13 篇 fumitaka kimura
  • 13 篇 p. nagabhushan
  • 13 篇 dong chao
  • 12 篇 ujjwal bhattacha...

语言

  • 730 篇 英文
  • 56 篇 其他
  • 3 篇 中文
检索条件"机构=Research Institute of Computer Vision and Pattern Recognition"
789 条 记 录,以下是261-270 订阅
排序:
Dynamic Functional Connectivity For The Classification Of Multiple Sclerosis Phenotype: A Hidden Markov Model Approach
Dynamic Functional Connectivity For The Classification Of Mu...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Jacopo Tessadori Muhammad Abubakar Yamin Paola Valsasina Massimo Filippi Maria A. Rocca Diego Sona Pattern Analysis and Computer Vision Istituto Italiano di Tecnologia Genova Italy Dipartimento di Ingegneria Navale Elettrica Elettronica e delle Telecomunicazioni University of Genova Italy Neuroimaging Research Unit Institute of Experimental Neurology Division of Neuroscience Neuroimaging Research Unit Institute of Experimental Neurology Division of NeuroscienceNeurology Unit Neurorehabilitation Unit Neurophysiology Service IRCCS San Raffaele Scientific Institute Milan Italy Vita Salute San Raffaele University Milan Italy Neuroinformatics Laboratory Fondazione Bruno Kessler Trento Italy
We present a pipeline for the classification of subjects according to multiple sclerosis phenotype. The approach is based on a hidden Markov model built on dynamic functional connectivity. More in detail, a sequence o... 详细信息
来源: 评论
TTPP: Temporal transformer with progressive prediction for efficient action anticipation
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Wen Peng, Xiaojiang Su, Yanzhou Qiao, Yu Cheng, Jian School of Information and Communication Engineering University of Electronic Science and Technology of China Chengdu Sichuan611731 China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab. Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
Video action anticipation aims to predict future action categories from observed frames. Current state-of-the-art approaches mainly resort to recurrent neural networks to encode history information into hidden states,... 详细信息
来源: 评论
BasicVSR: The search for essential components in video super-resolution and beyond
arXiv
收藏 引用
arXiv 2020年
作者: Chan, Kelvin C.K. Wang, Xintao Yu, Ke Dong, Chao Loy, Chen Change S-Lab Nanyang Technological University Singapore Applied Research Center Tencent PCG CUHK – SenseTime Joint Lab Chinese University of Hong Kong Shenzhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Video super-resolution (VSR) approaches tend to have more components than the image counterparts as they need to exploit the additional temporal dimension. Complex designs are not uncommon. In this study, we wish to u... 详细信息
来源: 评论
Are fast labeling methods reliable? A case study of computer-aided expert annotations on microscopy slides
arXiv
收藏 引用
arXiv 2020年
作者: Marzahl, Christian Bertram, Christof A. Aubreville, Marc Petrick, Anne Weiler, Kristina Glasel, Agnes C. Fragoso, Marco Merz, Sophie Bartenschlager, Florian Hoppe, Judith Langenhagen, Alina Jasensky, Anne Voigt, Jorn Klopeisch, Robert Maier, Andreas Pattern Recognition Lab Department of Computer Science Friedrich-Alexander-Universitat Research and Development EUROIMMUN Medizinische Labordiagnostika AG Institute of Veterinary Pathology Freie Universitat Berlin Department of Veterinary Clinical Sciences Clinical Pathology and Clinical Pathophysiology Justus-Liebig-University Giessen
Deep-learning-based pipelines have shown the potential to revolutionalize microscopy image diagnostics by providing visual augmentations and evaluations to a trained pathology expert. However, to match human performan... 详细信息
来源: 评论
Efficient Image Super-Resolution with Feature Interaction Weighted Hybrid Network
arXiv
收藏 引用
arXiv 2022年
作者: Li, Wenjie Li, Juncheng Gao, Guangwei Deng, Weihong Yang, Jian Qi, Guo-Jun Lin, Chia-Wen Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100080 China Intelligent Visual Information Perception Laboratory Institute of Advanced Technology Nanjing University of Posts and Telecommunications Nanjing210046 China Key Laboratory of Artificial Intelligence Ministry of Education Shanghai200240 China Provincial Key Laboratory for Computer Information Processing Technology Soochow University Suzhou215006 China School of Communication and Information Engineering Shanghai University Shanghai200444 China School of Computer Science and Technology Nanjing University of Science and Technology Nanjing210094 China Research Center for Industries of the Future the School of Engineering Westlake University Hangzhou310024 China OPPO Research SeattleWA98101 United States Department of Electrical Engineering National Tsing Hua University Hsinchu30013 Taiwan
Lightweight image super-resolution aims to reconstruct high-resolution images from low-resolution images using low computational costs. However, existing methods result in the loss of middle-layer features due to acti... 详细信息
来源: 评论
ICDAR 2019 CROHME + TFD: Competition on recognition of Handwritten Mathematical Expressions and Typeset Formula Detection
ICDAR 2019 CROHME + TFD: Competition on Recognition of Handw...
收藏 引用
International Conference on Document Analysis and recognition
作者: Mahshad Mahdavi Richard Zanibbi Harold Mouchere Christian Viard-Gaudin Utpal Garain Document and Pattern Recognition Lab Rochester Institute of Technology Rochester NY USA University of Nantes Nantes France LS2N - UMR CNRS 6004 University of Nantes Nantes France Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India
We summarize the tasks, protocol, and outcome for the 6th Competition on recognition of Handwritten Mathematical Expressions (CROHME), which includes a new formula detection in document images task (+ TFD). For CROHME... 详细信息
来源: 评论
A novel hybrid convolutional neural network for accurate organ segmentation in 3d head and neck CT images
arXiv
收藏 引用
arXiv 2021年
作者: Chen, Zijie Li, Cheng He, Junjun Ye, Jin Song, Diping Wang, Shanshan Gu, Lixu Qiao, Yu Shenzhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Guangdong Shenzhen China Shanghai AI Lab Shanghai China Shenzhen Yino Intelligence Techonology Co. Ltd. Guangdong Shenzhen China Co. Ltd. Guangdong Shenzhen China Paul C. Lauterbur Research Center for Biomedical Imaging Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Guangdong Shenzhen China School of Biomedical Engineering Shanghai Jiao Tong University Shanghai China Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China Peng Cheng Laboratory Guangdong Shenzhen China Pazhou Lab Guangdong Guangzhou China
Radiation therapy (RT) is widely employed in the clinic for the treatment of head and neck (HaN) cancers. An essential step of RT planning is the accurate segmentation of various organs-at-risks (OARs) in HaN CT image... 详细信息
来源: 评论
Cross-receptive Focused Inference Network for Lightweight Image Super-Resolution
arXiv
收藏 引用
arXiv 2022年
作者: Li, Wenjie Li, Juncheng Gao, Guangwei Deng, Weihong Zhou, Jiantao Yang, Jian Qi, Guo-Jun The Intelligent Visual Information Perception Laboratory Institute of Advanced Technology Nanjing University of Posts and Telecommunications Nanjing210046 China The Provincial Key Laboratory for Computer Information Processing Technology Soochow University Suzhou215006 China The School of Communication and Information Engineering Shanghai University Shanghai200444 China Jiangsu Key Laboratory of Image and Video Understanding for Social Safety Nanjing University of Science and Technology Nanjing210094 China The Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100876 China The State Key Laboratory of Internet of Things for Smart City Department of Computer and Information Science Faculty of Science and Technology University of Macau 999078 China The School of Computer Science and Technology Nanjing University of Science and Technology Nanjing210094 China The Research Center for Industries of the Future The School of Engineering Westlake University Hangzhou310024 China OPPO Research SeattleWA98101 United States
Recently, Transformer-based methods have shown impressive performance in single image super-resolution (SISR) tasks due to the ability of global feature extraction. However, the capabilities of Transformers that need ... 详细信息
来源: 评论
CRNN based jersey-bib number/text recognition in sports and marathon images  15
CRNN based jersey-bib number/text recognition in sports and ...
收藏 引用
15th IAPR International Conference on Document Analysis and recognition, ICDAR 2019
作者: Nag, Sauradip Ramachandra, Raghavendra Shivakumara, Palaiahnakote Pal, Umapada Lu, Tong Kankanhalli, Mohan Department of Computer Science & Engineering Kalyani Government Engineering College Kalyani India Faculty of Information Technology and Electrical Engineering Norwegian University of Science and Technology Norway Faculty of Computer System and Information Technology University of Malaya Malaysia Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India National Key Lab for Novel Software Technology Nanjing University China Department of Computer Science School of Computing National University of Singapore Singapore Singapore
The primary challenge in tracing the participants in sports and marathon video or images is to detect and localize the jersey/Bib number that may present in different regions of their outfit captured in cluttered envi... 详细信息
来源: 评论
Auxiliary Demographic Information Assisted Age Estimation With Cascaded Structure
收藏 引用
IEEE TRANSACTIONS ON CYBERNETICS 2018年 第9期48卷 2531-2541页
作者: Wan, Jun Tan, Zichang Lei, Zhen Guo, Guodong Li, Stan Z. Center for Biometrics and Security Research and the National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing China Lane Department of Computer Science and Electrical Engineering West Virginia University Morgantown WV USA
Owing to the variations including both intrinsic and extrinsic factors, age estimation remains a challenging problem. In this paper, five cascaded structure frameworks are proposed for age estimation based on convolut... 详细信息
来源: 评论