咨询与建议

限定检索结果

文献类型

  • 43 篇 期刊文献
  • 32 篇 会议

馆藏范围

  • 75 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 48 篇 工学
    • 33 篇 计算机科学与技术...
    • 30 篇 软件工程
    • 10 篇 控制科学与工程
    • 9 篇 电气工程
    • 7 篇 生物医学工程(可授...
    • 6 篇 生物工程
    • 5 篇 机械工程
    • 5 篇 光学工程
    • 5 篇 电子科学与技术(可...
    • 5 篇 信息与通信工程
    • 2 篇 建筑学
    • 2 篇 土木工程
  • 32 篇 理学
    • 16 篇 数学
    • 12 篇 物理学
    • 7 篇 生物学
    • 6 篇 统计学(可授理学、...
    • 3 篇 化学
    • 3 篇 系统科学
    • 2 篇 地质学
  • 14 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 3 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
    • 2 篇 药学(可授医学、理...
  • 1 篇 哲学
    • 1 篇 哲学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 历史学
    • 1 篇 世界史
  • 1 篇 农学
  • 1 篇 艺术学

主题

  • 4 篇 image segmentati...
  • 4 篇 feature extracti...
  • 3 篇 optimization
  • 3 篇 computational mo...
  • 3 篇 benchmarking
  • 3 篇 machine learning
  • 3 篇 training
  • 2 篇 support vector m...
  • 2 篇 three-dimensiona...
  • 2 篇 neural networks
  • 2 篇 predictive model...
  • 2 篇 hypertension
  • 2 篇 human robot inte...
  • 2 篇 semantics
  • 2 篇 fuses
  • 2 篇 software
  • 2 篇 laser radar
  • 2 篇 artificial intel...
  • 2 篇 diseases
  • 2 篇 tumors

机构

  • 9 篇 center for machi...
  • 9 篇 center for data ...
  • 8 篇 peking universit...
  • 7 篇 national enginee...
  • 7 篇 beijing internat...
  • 5 篇 school of comput...
  • 4 篇 hebei key labora...
  • 4 篇 research laborat...
  • 4 篇 xlim umr cnrs 72...
  • 4 篇 research center ...
  • 3 篇 tianjin key labo...
  • 3 篇 department of in...
  • 3 篇 centre for medic...
  • 3 篇 fraunhofer mevis...
  • 3 篇 department of co...
  • 3 篇 school of cybers...
  • 3 篇 provincial key l...
  • 3 篇 department of ra...
  • 3 篇 national biomedi...
  • 3 篇 university of pe...

作者

  • 8 篇 zhang li
  • 7 篇 li zhang
  • 7 篇 bin dong
  • 6 篇 jie zhao
  • 5 篇 haoshen li
  • 5 篇 zifan chen
  • 4 篇 théra michel
  • 4 篇 hongpeng wang
  • 4 篇 yao jen-chih
  • 4 篇 wei zhou
  • 3 篇 wan dai
  • 3 篇 zhang linfeng
  • 3 篇 yunwei xin
  • 3 篇 mingze yuan
  • 3 篇 weinan e.
  • 3 篇 heyun chen
  • 3 篇 fanzhang li
  • 3 篇 yan zhang
  • 3 篇 zhao zhang
  • 3 篇 li fanzhang

语言

  • 69 篇 英文
  • 5 篇 其他
  • 1 篇 中文
检索条件"机构=Research Laboratory of Machine Learning and Pervasive Computing"
75 条 记 录,以下是31-40 订阅
排序:
Adaptive Neighborhood Propagation by Joint L2,1-Norm Regularized Sparse Coding for Representation and Classification
Adaptive Neighborhood Propagation by Joint L2,1-Norm Regular...
收藏 引用
IEEE International Conference on Data Mining (ICDM)
作者: Lei Jia Zhao Zhang Lei Wang Weiming Jiang Mingbo Zhao School of Computer Science and Technology & Joint International Research Laboratory of Machine Learning and Neuromorphic Computing Soochow University Suzhou China Department of Electronic Engineering City University of Hong Kong Kowloon Hong Kong
We propose a new transductive label propagation method, termed Adaptive Neighborhood Propagation (Adaptive-NP) by joint L2,1-norm regularized sparse coding, for semi-supervised classification. To make the predicted so... 详细信息
来源: 评论
Computational analysis of laminar structure of the human cortex based on local neuron features
arXiv
收藏 引用
arXiv 2019年
作者: Stajduhar, Andrija Lipic, Tomislav Sedmak, Goran Loncaric, Sven Judaš, Milos Croatian Institute for Brain Research University of Zagreb School of Medicine Šalata 12 Zagreb10000 Croatia Laboratory for Machine Learning and Knowledge Representation Rud-er Boškovic Institute Faculty of Electrical Engineering and Computing University of Zagreb
In this paper, we present a novel method for analysis and segmentation of laminar structure of the cortex based on tissue characteristics whose change across the gray matter facilitates distinction between cortical la... 详细信息
来源: 评论
ContinUNet: fast deep radio image segmentation in the Square Kilometre Array era with U-Net
收藏 引用
RAS Techniques and Instruments 2024年 第1期3卷 315-332页
作者: Stewart, Hattie Birkinshaw, Mark Yeung, Siu-Lun Maddox, Natasha Maughan, Ben Thiyagalingam, Jeyan School of Physics University of Bristol HH Wills Physics Laboratory SciML Scientific Computing Department Research Complex at Harwell Rutherford Appleton Laboratory UKRI Centre for Doctoral Training in Artificial Intelligence Machine Learning & Advanced Computing Department of Physics Vivian Tower Swansea University
We present a new machine learning (ML)-driven source-finding tool for next-generation radio surveys that performs fast source extraction on a range of source morphologies at large dynamic ranges with minimal parameter... 详细信息
来源: 评论
Improving generative model-based unfolding with Schrödinger bridges
收藏 引用
Physical Review D 2024年 第7期109卷 076011-076011页
作者: Sascha Diefenbacher Guan-Horng Liu Vinicius Mikuni Benjamin Nachman Weili Nie Physics Division Lawrence Berkeley National Laboratory Berkeley California 94720 USA Autonomous Control and Decision Systems Laboratory Georgia Institute of Technology Atlanta Georgia 30332 USA National Energy Research Scientific Computing Center Berkeley Lab Berkeley California 94720 USA Berkeley Institute for Data Science University of California Berkeley California 94720 USA Machine Learning Research Group NVIDIA Research
machine learning-based unfolding has enabled unbinned and high-dimensional differential cross section measurements. Two main approaches have emerged in this research area; one based on discriminative models and one ba... 详细信息
来源: 评论
A Neurobehavioral Evaluation of the Efficacy of 1mA Longitudinal, Anodal TDCS on Multitasking and Transfer Performance
A Neurobehavioral Evaluation of the Efficacy of 1mA Longitud...
收藏 引用
IEEE International Conference on Systems, Man and Cybernetics
作者: Akash K Rao Shashank Uttrani Darshil Shah Vishnu K Menon Arnav Bhavsar Shubhajit Roy Chowdhury Ramsingh Negi Varun Dutt Manipal Academy of Higher Education Applied Cognitive Science Laboratory Indian Institute of Technology Mandi School of Computing and Electrical Engineering Indian Institute of Technology Mandi Cognitive Control and Machine Learning Group at the Institute of Nuclear Medicine and Allied Sciences Defence Research and Development Organization
Multitasking requires rapid switching of attention and cognitive resources between different tasks in a dynamic environment, relying on cognitive processes, such as working memory, executive control, and selective att... 详细信息
来源: 评论
Multi-Scale Clinical-Guided Binocular Fusion Framework for Predicting New-Onset Hypertension Over a Four-Year Period
Multi-Scale Clinical-Guided Binocular Fusion Framework for P...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Haoshen Li Zifan Chen Jie Zhao Heyun Chen Hexin Dong Mingze Yuan Bin Dong Li Zhang Center for Data Science Peking University China National Engineering Laboratory for Big Data Analysis and Applications Peking University China Peking University Changsha Institute for Computing and Digital Economy China Beijing International Center for Mathematical Research Peking University China Center for Machine Learning Research Peking University China
Hypertension is a major global health concern, linked to various cardiovascular diseases and associated with distinct ocular manifestations. While recent advances in artificial intelligence have enabled accurate diagn... 详细信息
来源: 评论
Entropy-based Active learning of Graph Neural Network Surrogate Models for Materials Properties
arXiv
收藏 引用
arXiv 2021年
作者: Allotey, Johannes Butler, Keith T. Thiyagalingam, Jeyan School of Physics University of Bristol BS8 1TL United Kingdom Scientific Machine Learning Research Group Scientific Computing Department Rutherford Appleton Laboratory Science and Technology Facilities Council DidcotOX11 0DQ United Kingdom
Graph neural networks, trained on experimental or calculated data are becoming an increasingly important tool in computational materials science. Networks, once trained, are able to make highly accurate predictions at... 详细信息
来源: 评论
On Error Bounds of Inequalities in Asplund Spaces
arXiv
收藏 引用
arXiv 2023年
作者: Wei, Zhou Théra, Michel Yao, Jen-Chih Hebei Key Laboratory of Machine Learning and Computational Intelligence College of Mathematics and Information Science Hebei University Baoding071002 China XLIM UMR CNRS 7252 Université de Limoges Limoges France Research Center for Interneural Computing China Medical University Hospital China Medical University Taichung Taiwan
Error bounds are central objects in optimization theory and its applications. They were for a long time restricted only to the theory before becoming over the course of time a field of itself. This paper is devoted to... 详细信息
来源: 评论
Strategic priorities for transformative progress in advancing biology with proteomics and artificial intelligence
arXiv
收藏 引用
arXiv 2025年
作者: Sun, Yingying Jun, A. Liu, Zhiwei Sun, Rui Qian, Liujia Payne, Samuel H. Bittremieux, Wout Ralser, Markus Li, Chen Chen, Yi Dong, Zhen Perez-Riverol, Yasset Khan, Asif Sander, Chris Aebersold, Ruedi Vizcaíno, Juan Antonio Krieger, Jonathan R. Yao, Jianhua Wen, Han Zhang, Linfeng Zhu, Yunping Xuan, Yue Sun, Benjamin Boyang Qiao, Liang Hermjakob, Henning Tang, Haixu Gao, Huanhuan Deng, Yamin Zhong, Qing Chang, Cheng Bandeira, Nuno Li, Ming Weinan, E. Sun, Siqi Yang, Yuedong Omenn, Gilbert S. Zhang, Yue Xu, Ping Fu, Yan Liu, Xiaowen Overall, Christopher M. Wang, Yu Deutsch, Eric W. Chen, Luonan Cox, Jürgen Demichev, Vadim He, Fuchu Huang, Jiaxing Jin, Huilin Liu, Chao Li, Nan Luan, Zhongzhi Song, Jiangning Yu, Kaicheng Wan, Wanggen Wang, Tai Zhang, Kang Zhang, Le Bell, Peter A. Mann, Matthias Zhang, Bing Guo, Tiannan Affiliated Hangzhou First People’s Hospital State Key Laboratory of Medical Proteomics School of Medicine Westlake University Zhejiang Province Hangzhou China Westlake Center for Intelligent Proteomics Westlake Laboratory of Life Sciences and Biomedicine Zhejiang Province Hangzhou China Biology Department Brigham Young University ProvoUT84602 United States Department of Computer Science University of Antwerp Antwerp2020 Belgium Department of Biochemistry CharitéUniversitätsmedizin Berlin Berlin Germany Biomedicine Discovery Institute Department of Biochemistry and Molecular Biology Monash University MelbourneVICVIC 3800 Australia Wellcome Genome Campus Hinxton CambridgeCB10 1SD United Kingdom Harvard Medical School Ludwig Center at Harvard United States Harvard Medical School Broad Institute Ludwig Center at Harvard Dana-Farber Cancer Institute United States Department of Biology Institute of Molecular Systems Biology ETH Zürich Zürich Switzerland Bruker Ltd. MiltonONL9T 6P4 Canada AI for Life Sciences Lab Tencent Shenzhen518057 China State Key Laboratory of Medical Proteomics AI for Science Institute Beijing100080 China Beijing Institute of Lifeomics Beijing102206 China Thermo Fisher Scientific GmbH Hanna-Kunath Str. 11 Bremen28199 Germany Informatics and Predictive Sciences Research Bristol Myers Squibb United States Department of Chemistry Fudan University Songhu Road 2005 Shanghai200438 China Department of Computer Science Luddy School of Informatics Computing and Engineering Indiana University IN47408 United States ProCan® Children’s Medical Research Institute Faculty of Medicine and Health The University of Sydney WestmeadNSW Australia La Jolla CA United States Central China Institute of Artificial Intelligence University of Waterloo Canada AI for Science Institute Center for Machine Learning Research School of Mathematical Sciences Peking University China Research Institute of Intelligent Complex Systems Fudan U
Artificial intelligence (AI) is transforming scientific research, including proteomics. Advances in mass spectrometry (MS)-based proteomics data quality, diversity, and scale, combined with groundbreaking AI technique... 详细信息
来源: 评论
MSI-UNet: A Flexible UNet-Based Multi-Scale Interactive Framework for 3D Gastric Tumor Segmentation on CT Scans
MSI-UNet: A Flexible UNet-Based Multi-Scale Interactive Fram...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Heyun Chen Zifan Chen Jie Zhao Haoshen Li Jiazheng Li Yiting Liu Mingze Yuan Peng Bao Xinyu Nan Bin Dong Lei Tang Li Zhang Center for Data Science Peking University China National Engineering Laboratory for Big Data Analysis and Applications Peking University China Peking University Changsha Institute for Computing and Digital Economy China Peking University Cancer Hospital&Institute China Beijing International Center for Mathematical Research Peking University China Center for Machine Learning Research Peking University China
Accurate segmentation of gastric tumors is critical yet presents a formidable challenge in medical imaging, where conventional UNet-based frameworks, despite their prevalence, falter on intricate tumor samples due to ... 详细信息
来源: 评论