咨询与建议

限定检索结果

文献类型

  • 41 篇 期刊文献
  • 32 篇 会议

馆藏范围

  • 73 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 46 篇 工学
    • 31 篇 计算机科学与技术...
    • 28 篇 软件工程
    • 9 篇 控制科学与工程
    • 8 篇 电气工程
    • 7 篇 生物医学工程(可授...
    • 6 篇 生物工程
    • 4 篇 机械工程
    • 4 篇 光学工程
    • 4 篇 电子科学与技术(可...
    • 3 篇 信息与通信工程
    • 2 篇 建筑学
    • 2 篇 土木工程
  • 30 篇 理学
    • 16 篇 数学
    • 10 篇 物理学
    • 7 篇 生物学
    • 6 篇 统计学(可授理学、...
    • 3 篇 化学
    • 3 篇 系统科学
    • 2 篇 地质学
  • 13 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 6 篇 图书情报与档案管...
    • 2 篇 工商管理
  • 3 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
    • 2 篇 药学(可授医学、理...
  • 1 篇 哲学
    • 1 篇 哲学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 历史学
    • 1 篇 世界史
  • 1 篇 农学
  • 1 篇 艺术学

主题

  • 4 篇 image segmentati...
  • 4 篇 feature extracti...
  • 3 篇 optimization
  • 3 篇 computational mo...
  • 3 篇 benchmarking
  • 3 篇 machine learning
  • 3 篇 training
  • 2 篇 support vector m...
  • 2 篇 three-dimensiona...
  • 2 篇 neural networks
  • 2 篇 predictive model...
  • 2 篇 hypertension
  • 2 篇 human robot inte...
  • 2 篇 semantics
  • 2 篇 fuses
  • 2 篇 software
  • 2 篇 laser radar
  • 2 篇 artificial intel...
  • 2 篇 diseases
  • 2 篇 tumors

机构

  • 9 篇 center for machi...
  • 9 篇 center for data ...
  • 8 篇 peking universit...
  • 7 篇 national enginee...
  • 7 篇 beijing internat...
  • 5 篇 school of comput...
  • 4 篇 hebei key labora...
  • 4 篇 research laborat...
  • 4 篇 xlim umr cnrs 72...
  • 4 篇 research center ...
  • 3 篇 tianjin key labo...
  • 3 篇 department of in...
  • 3 篇 centre for medic...
  • 3 篇 fraunhofer mevis...
  • 3 篇 department of co...
  • 3 篇 school of cybers...
  • 3 篇 provincial key l...
  • 3 篇 department of ra...
  • 3 篇 national biomedi...
  • 3 篇 university of pe...

作者

  • 8 篇 zhang li
  • 7 篇 li zhang
  • 7 篇 bin dong
  • 6 篇 jie zhao
  • 5 篇 haoshen li
  • 5 篇 zifan chen
  • 4 篇 théra michel
  • 4 篇 hongpeng wang
  • 4 篇 yao jen-chih
  • 4 篇 wei zhou
  • 3 篇 wan dai
  • 3 篇 zhang linfeng
  • 3 篇 yunwei xin
  • 3 篇 mingze yuan
  • 3 篇 weinan e.
  • 3 篇 heyun chen
  • 3 篇 fanzhang li
  • 3 篇 yan zhang
  • 3 篇 zhao zhang
  • 3 篇 li fanzhang

语言

  • 67 篇 英文
  • 5 篇 其他
  • 1 篇 中文
检索条件"机构=Research Laboratory of Machine Learning and Pervasive Computing"
73 条 记 录,以下是41-50 订阅
排序:
GSLB: The Graph Structure learning Benchmark
arXiv
收藏 引用
arXiv 2023年
作者: Li, Zhixun Wang, Liang Sun, Xin Luo, Yifan Zhu, Yanqiao Chen, Dingshuo Luo, Yingtao Zhou, Xiangxin Liu, Qiang Wu, Shu Yu, Jeffrey Xu Department of Systems Engineering and Engineering Management The Chinese University of Hong Kong Hong Kong Center for Research on Intelligent Perception Computing State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of Automation Chinese Academy of Sciences China School of Artificial Intelligence University of Chinese Academy of Sciences China Department of Automation University of Science and Technology of China China School of Cyberspace Security Beijing University of Posts and Telecommunications China Department of Computer Science University of California Los Angeles United States Heinz College of Information Systems and Public Policy Machine Learning Department School of Computer Science Carnegie Mellon University United States
Graph Structure learning (GSL) has recently garnered considerable attention due to its ability to optimize both the parameters of Graph Neural Networks (GNNs) and the computation graph structure simultaneously. Despit... 详细信息
来源: 评论
Consensus-Based Optimization Methods Converge Globally
arXiv
收藏 引用
arXiv 2021年
作者: Fornasier, Massimo Klock, Timo Riedl, Konstantin Technical University of Munich School of Computation Information and Technology Department of Mathematics Munich Germany Munich Center for Machine Learning Munich Germany Munich Data Science Institute Munich Germany Simula Research Laboratory Department of Numerical Analysis and Scientific Computing Oslo Norway University of San Diego Department of Mathematics San DiegoCA United States
In this paper, we study consensus-based optimization (CBO), which is a multi-agent metaheuristic derivative-free optimization method that can globally minimize nonconvex nonsmooth functions and is amenable to theoreti... 详细信息
来源: 评论
Multi-label Classification with High-rank and High-order Label Correlations
arXiv
收藏 引用
arXiv 2022年
作者: Si, Chongjie Jia, Yuheng Wang, Ran Zhang, Min-Ling Feng, Yanghe Qu, Chongxiao The Chien-Shiung Wu College Southeast University Nanjing210096 China The MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai200240 China The School of Computer Science and Engineering Southeast University Nanjing210096 China Ministry of Education China School of Computing & Information Sciences Caritas Institute of Higher Education Hong Kong The Key Laboratory of Computer Network and Information Integration Southeast University Ministry of Education China The School of Mathematical Science Shenzhen University Shenzhen518060 China Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China The College of Systems Engineering National University of Defense Technology China The 52nd Research Institute of China Electronics Technology Group China
Exploiting label correlations is important to multi-label classification. Previous methods capture the high-order label correlations mainly by transforming the label matrix to a latent label space with low-rank matrix... 详细信息
来源: 评论
Unsupervised ensemble learning based on graph embedding for image clustering  25th
Unsupervised ensemble learning based on graph embedding for ...
收藏 引用
25th International Conference on Neural Information Processing, ICONIP 2018
作者: Luo, Xiaohui Zhang, Li Li, Fanzhang Hu, Chengxiang School of Computer Science and Technology and Joint International Research Laboratory of Machine Learning and Neuromorphic Computing Provincial Key Laboratory for Computer Information Processing Technology Soochow University SuzhouJiangsu215006 China
Manifold learning has attracted more and more attention in machine learning for past decades. Unsupervised Large Graph Embedding (ULGE), which performs well on the large-scale data, has been proposed for manifold lear... 详细信息
来源: 评论
A multi-objective deep reinforcement learning algorithm for spatio-temporal latency optimization in mobile IoT-enabled edge computing networks
收藏 引用
Simulation Modelling Practice and Theory 2025年 143卷
作者: Parisa Khoshvaght Amir Haider Amir Masoud Rahmani Farhad Soleimanian Gharehchopogh Ferzat Anka Jan Lansky Mehdi Hosseinzadeh Institute of Research and Development Duy Tan University Da Nang Vietnam School of Engineering & Technology Duy Tan University Da Nang Vietnam Centre for Research Impact & Outcome Chitkara University Institute of Engineering and Technology Chitkara University Rajpura 140401 Punjab India Department of AI and Robotics Sejong University Seoul 05006 Republic of Korea Future Technology Research Center National Yunlin University of Science and Technology Yunlin Taiwan Department of Computer Engineering Ur. C. Islamic Azad University Urmia Iran Data Science Application and Research Center (VEBIM) Fatih Sultan Mehmet Vakif University Istanbul Türkiye Department of Computer Science and Mathematics Faculty of Economic Studies University of Finance and Administration Prague Czech Republic Pattern Recognition and Machine Learning Laboratory School of Computing Gachon University Seongnam Republic of Korea
The rapid increase in Mobile Internet of Things (IoT) devices requires novel computational frameworks. These frameworks must meet strict latency and energy efficiency requirements in Edge and Mobile Edge computing (ME...
来源: 评论
Computational analysis of laminar structure of the human cortex based on local neuron features
arXiv
收藏 引用
arXiv 2019年
作者: Stajduhar, Andrija Lipic, Tomislav Sedmak, Goran Loncaric, Sven Judaš, Milos Croatian Institute for Brain Research University of Zagreb School of Medicine Šalata 12 Zagreb10000 Croatia Laboratory for Machine Learning and Knowledge Representation Rud-er Boškovic Institute Faculty of Electrical Engineering and Computing University of Zagreb
In this paper, we present a novel method for analysis and segmentation of laminar structure of the cortex based on tissue characteristics whose change across the gray matter facilitates distinction between cortical la... 详细信息
来源: 评论
DPA-2: a large atomic model as a multi-task learner
arXiv
收藏 引用
arXiv 2023年
作者: Zhang, Duo Liu, Xinzijian Zhang, Xiangyu Zhang, Chengqian Cai, Chun Bi, Hangrui Du, Yiming Qin, Xuejian Peng, Anyang Huang, Jiameng Li, Bowen Shan, Yifan Zeng, Jinzhe Zhang, Yuzhi Liu, Siyuan Li, Yifan Chang, Junhan Wang, Xinyan Zhou, Shuo Liu, Jianchuan Luo, Xiaoshan Wang, Zhenyu Jiang, Wanrun Wu, Jing Yang, Yudi Yang, Jiyuan Yang, Manyi Gong, Fu-Qiang Zhang, Linshuang Shi, Mengchao Dai, Fu-Zhi York, Darrin M. Liu, Shi Zhu, Tong Zhong, Zhicheng Lv, Jian Cheng, Jun Jia, Weile Chen, Mohan Ke, Guolin Weinan, E. Zhang, Linfeng Wang, Han AI for Science Institute Beijing100080 China DP Technology Beijing100080 China Academy for Advanced Interdisciplinary Studies Peking University Beijing100871 China State Key Lab of Processors Institute of Computing Technology Chinese Academy of Sciences Beijing100871 China University of Chinese Academy of Sciences Beijing100871 China HEDPS CAPT College of Engineering Peking University Beijing100871 China Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo315201 China CAS Key Laboratory of Magnetic Materials and Devices Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology Chinese Academy of Sciences Ningbo315201 China School of Electronics Engineering and Computer Science Peking University Beijing100871 China Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai200062 China Laboratory for Biomolecular Simulation Research Institute for Quantitative Biomedicine Department of Chemistry and Chemical Biology Rutgers University PiscatawayNJ08854 United States Department of Chemistry Princeton University PrincetonNJ08540 United States College of Chemistry and Molecular Engineering Peking University Beijing100871 China Yuanpei College Peking University Beijing100871 China School of Electrical Engineering and Electronic Information Xihua University Chengdu610039 China State Key Laboratory of Superhard Materials College of Physics Jilin University Changchun130012 China Key Laboratory of Material Simulation Methods & Software of Ministry of Education College of Physics Jilin University Changchun130012 China International Center of Future Science Jilin University Changchun130012 China Key Laboratory for Quantum Materials of Zhejiang Province Department of Physics School of Science Westlake University Zhejiang Hangzhou310030 China Atomistic Simulations Italia
The rapid advancements in artificial intelligence (AI) are catalyzing transformative changes in atomic modeling, simulation, and design. AI-driven potential energy models have demonstrated the capability to conduct la... 详细信息
来源: 评论
Magnetostatics and micromagnetics with physics informed neural networks
arXiv
收藏 引用
arXiv 2021年
作者: Kovacs, Alexander Exl, Lukas Kornell, Alexander Fischbacher, Johann Hovorka, Markus Gusenbauer, Markus Breth, Leoni Oezelt, Harald Praetorius, Dirk Suess, Dieter Schrefl, Thomas Christian Doppler Laboratory for Magnet design through physics informed machine learning Viktor Kaplan-Straße 2E Wiener Neustadt2700 Austria Department for Integrated Sensor Systems Danube University Krems Viktor Kaplan-Straße 2E Wiener Neustadt2700 Austria Department of Mathematics University of Vienna Oskar-Morgenstern-Platz 1 Vienna1090 Austria Wolfgang Pauli Institute Oskar-Morgenstern-Platz 1 Vienna1090 Austria Research Platform MMM Mathematics-Magnetism-Materials Oskar-Morgenstern-Platz 1 Vienna1090 Austria Institute of Analysis and Scientific Computing TU Wien Wiedner Hauptstraße 8-10 Vienna1040 Austria Physics of Functional Materials University of Vienna Währinger Straße 17 Vienna1090 Austria
Partial differential equations and variational problems can be solved with physics informed neural networks (PINNs). The unknown field is approximated with neural networks. Minimizing the residuals of the static Maxwe... 详细信息
来源: 评论
FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare
arXiv
收藏 引用
arXiv 2023年
作者: Lekadir, Karim Feragen, Aasa Fofanah, Abdul Joseph Frangi, Alejandro F. Buyx, Alena Emelie, Anais Lara, Andrea Porras, Antonio R. Chan, An-Wen Navarro, Arcadi Glocker, Ben Botwe, Benard O. Khanal, Bishesh Beger, Brigit Wu, Carol C. Cintas, Celia Langlotz, Curtis P. Rueckert, Daniel Mzurikwao, Deogratias Fotiadis, Dimitrios I. Zhussupov, Doszhan Ferrante, Enzo Meijering, Erik Weicken, Eva González, Fabio A. Asselbergs, Folkert W. Prior, Fred Krestin, Gabriel P. Collins, Gary S. Tegenaw, Geletaw S. Kaissis, Georgios Misuraca, Gianluca Tsakou, Gianna Dwivedi, Girish Kondylakis, Haridimos Jayakody, Harsha Woodruf, Henry C. Mayer, Horst Joachim Aerts, Hugo JWL Walsh, Ian Chouvarda, Ioanna Buvat, Irène Tributsch, Isabell Rekik, Islem Duncan, James Kalpathy-Cramer, Jayashree Zahir, Jihad Park, Jinah Mongan, John Gichoya, Judy W. Schnabel, Julia A. Kushibar, Kaisar Riklund, Katrine Mori, Kensaku Marias, Kostas Amugongo, Lameck M. Fromont, Lauren A. Maier-Hein, Lena Alberich, Leonor Cerdá Rittner, Leticia Phiri, Lighton Marrakchi-Kacem, Linda Donoso-Bach, Lluís Martí-Bonmatí, Luis Cardoso, M. Jorge Bobowicz, Maciej Shabani, Mahsa Tsiknakis, Manolis Zuluaga, Maria A. Bielikova, Maria Fritzsche, Marie-Christine Camacho, Marina Linguraru, Marius George Wenzel, Markus De Bruijne, Marleen Tolsgaard, Martin G. Ghassemi, Marzyeh Ashrafuzzaman, Md Goisauf, Melanie Yaqub, Mohammad Abadía, Mónica Cano Mahmoud, Mukhtar M.E. Elattar, Mustafa Rieke, Nicola Papanikolaou, Nikolaos Lazrak, Noussair Díaz, Oliver Salvado, Olivier Pujol, Oriol Sall, Ousmane Guevara, Pamela Gordebeke, Peter Lambin, Philippe Brown, Pieta Abolmaesumi, Purang Dou, Qi Lu, Qinghua Osuala, Richard Nakasi, Rose Zhou, S. Kevin Napel, Sandy Colantonio, Sara Albarqouni, Shadi Joshi, Smriti Carter, Stacy Klein, Stefan Petersen, Steffen E. Aussó, Susanna Awate, Suyash Raviv, Tammy Riklin Cook, Tessa Mutsvangwa, Tinashe E.M. Rogers, Wendy A. Niessen, Wiro J. Puig-Bosch, Xènia Zeng, Yi Mohammed, Yunusa G. Aquino, Yves Saint James Salahuddin, Zohaib Starmans, Martijn P.A. Department de Matemàtiques i Informàtica Universitat de Barcelona Barcelona Spain Barcelona Spain DTU Compute Technical University of Denmark Kgs Lyngby Denmark Department of Mathematics and Computer Science Faculty of Science and Technology Milton Margai Technical University Freetown Sierra Leone Center for Computational Imaging & Simulation Technologies in Biomedicine Schools of Computing and Medicine University of Leeds Leeds United Kingdom Cardiovascular Science and Electronic Engineering Departments KU Leuven Leuven Belgium Institute of History and Ethics in Medicine Technical University of Munich Munich Germany Faculty of Engineering of Systems Informatics and Sciences of Computing Galileo University Guatemala City Guatemala Department of Biostatistics and Informatics Colorado School of Public Health University of Colorado Anschutz Medical Campus AuroraCO United States Department of Medicine Women’s College Research Institute University of Toronto Toronto Canada Universitat Pompeu Fabra BarcelonaBeta Brain Research Center Barcelona Spain Department of Computing Imperial College London London United Kingdom School of Biomedical & Allied Health Sciences University of Ghana Accra Ghana Department of Midwifery & Radiography School of Health & Psychological Sciences City University of London United Kingdom Kathmandu Nepal European Heart Network Brussels Belgium Department of Thoracic Imaging University of Texas MD Anderson Cancer Center Houston United States IBM Research Africa Nairobi Kenya Departments of Radiology Medicine and Biomedical Data Science Stanford University School of Medicine Stanford United States Institute for AI and Informatics in Medicine Klinikum rechts der Isar Technical University Munich Munich Germany Department of Computing Imperial College London London United Kingdom Muhimbili University of Health and Allied Sciences Dar es Salaam Tanzania United Republic of Ioannina Greece Almaty AI Lab Almaty Kazakhstan
Background: Despite major advances in artificial intelligence (AI) research for healthcare, the deployment and adoption of AI technologies remain limited in clinical practice. In recent years, concerns have been raise... 详细信息
来源: 评论
Strategic priorities for transformative progress in advancing biology with proteomics and artificial intelligence
arXiv
收藏 引用
arXiv 2025年
作者: Sun, Yingying Jun, A. Liu, Zhiwei Sun, Rui Qian, Liujia Payne, Samuel H. Bittremieux, Wout Ralser, Markus Li, Chen Chen, Yi Dong, Zhen Perez-Riverol, Yasset Khan, Asif Sander, Chris Aebersold, Ruedi Vizcaíno, Juan Antonio Krieger, Jonathan R. Yao, Jianhua Wen, Han Zhang, Linfeng Zhu, Yunping Xuan, Yue Sun, Benjamin Boyang Qiao, Liang Hermjakob, Henning Tang, Haixu Gao, Huanhuan Deng, Yamin Zhong, Qing Chang, Cheng Bandeira, Nuno Li, Ming Weinan, E. Sun, Siqi Yang, Yuedong Omenn, Gilbert S. Zhang, Yue Xu, Ping Fu, Yan Liu, Xiaowen Overall, Christopher M. Wang, Yu Deutsch, Eric W. Chen, Luonan Cox, Jürgen Demichev, Vadim He, Fuchu Huang, Jiaxing Jin, Huilin Liu, Chao Li, Nan Luan, Zhongzhi Song, Jiangning Yu, Kaicheng Wan, Wanggen Wang, Tai Zhang, Kang Zhang, Le Bell, Peter A. Mann, Matthias Zhang, Bing Guo, Tiannan Affiliated Hangzhou First People’s Hospital State Key Laboratory of Medical Proteomics School of Medicine Westlake University Zhejiang Province Hangzhou China Westlake Center for Intelligent Proteomics Westlake Laboratory of Life Sciences and Biomedicine Zhejiang Province Hangzhou China Biology Department Brigham Young University ProvoUT84602 United States Department of Computer Science University of Antwerp Antwerp2020 Belgium Department of Biochemistry CharitéUniversitätsmedizin Berlin Berlin Germany Biomedicine Discovery Institute Department of Biochemistry and Molecular Biology Monash University MelbourneVICVIC 3800 Australia Wellcome Genome Campus Hinxton CambridgeCB10 1SD United Kingdom Harvard Medical School Ludwig Center at Harvard United States Harvard Medical School Broad Institute Ludwig Center at Harvard Dana-Farber Cancer Institute United States Department of Biology Institute of Molecular Systems Biology ETH Zürich Zürich Switzerland Bruker Ltd. MiltonONL9T 6P4 Canada AI for Life Sciences Lab Tencent Shenzhen518057 China State Key Laboratory of Medical Proteomics AI for Science Institute Beijing100080 China Beijing Institute of Lifeomics Beijing102206 China Thermo Fisher Scientific GmbH Hanna-Kunath Str. 11 Bremen28199 Germany Informatics and Predictive Sciences Research Bristol Myers Squibb United States Department of Chemistry Fudan University Songhu Road 2005 Shanghai200438 China Department of Computer Science Luddy School of Informatics Computing and Engineering Indiana University IN47408 United States ProCan® Children’s Medical Research Institute Faculty of Medicine and Health The University of Sydney WestmeadNSW Australia La Jolla CA United States Central China Institute of Artificial Intelligence University of Waterloo Canada AI for Science Institute Center for Machine Learning Research School of Mathematical Sciences Peking University China Research Institute of Intelligent Complex Systems Fudan U
Artificial intelligence (AI) is transforming scientific research, including proteomics. Advances in mass spectrometry (MS)-based proteomics data quality, diversity, and scale, combined with groundbreaking AI technique... 详细信息
来源: 评论