咨询与建议

限定检索结果

文献类型

  • 311 篇 期刊文献
  • 295 篇 会议
  • 4 册 图书

馆藏范围

  • 610 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 339 篇 工学
    • 107 篇 控制科学与工程
    • 89 篇 计算机科学与技术...
    • 75 篇 软件工程
    • 66 篇 机械工程
    • 62 篇 电气工程
    • 45 篇 船舶与海洋工程
    • 43 篇 土木工程
    • 38 篇 信息与通信工程
    • 36 篇 电子科学与技术(可...
    • 31 篇 交通运输工程
    • 26 篇 仪器科学与技术
    • 24 篇 动力工程及工程热...
    • 23 篇 航空宇航科学与技...
    • 21 篇 力学(可授工学、理...
    • 16 篇 光学工程
    • 16 篇 安全科学与工程
    • 15 篇 水利工程
    • 15 篇 生物工程
    • 14 篇 化学工程与技术
  • 193 篇 理学
    • 60 篇 数学
    • 48 篇 物理学
    • 39 篇 海洋科学
    • 33 篇 生物学
    • 22 篇 系统科学
    • 17 篇 统计学(可授理学、...
    • 15 篇 化学
  • 61 篇 管理学
    • 44 篇 管理科学与工程(可...
  • 48 篇 医学
    • 38 篇 临床医学
    • 26 篇 基础医学(可授医学...
    • 19 篇 公共卫生与预防医...
  • 9 篇 农学
  • 8 篇 经济学
  • 8 篇 法学
  • 4 篇 教育学
  • 2 篇 文学
  • 2 篇 军事学

主题

  • 40 篇 control systems
  • 14 篇 optimization
  • 12 篇 robust control
  • 12 篇 robot sensing sy...
  • 12 篇 trajectory
  • 11 篇 robots
  • 10 篇 training
  • 9 篇 legged locomotio...
  • 8 篇 gravitational wa...
  • 8 篇 process control
  • 8 篇 uncertainty
  • 8 篇 nonlinear system...
  • 8 篇 optimal control
  • 8 篇 mathematical mod...
  • 8 篇 vehicles
  • 8 篇 robustness
  • 8 篇 adaptive control
  • 7 篇 safety
  • 7 篇 stability analys...
  • 7 篇 predictive model...

机构

  • 14 篇 institute for pl...
  • 14 篇 institutes for r...
  • 14 篇 key laboratory o...
  • 13 篇 university of so...
  • 13 篇 state key labora...
  • 12 篇 colorado state u...
  • 12 篇 department of as...
  • 12 篇 scuola di ingegn...
  • 12 篇 king’s college l...
  • 12 篇 the university o...
  • 12 篇 infn sezione di ...
  • 12 篇 dipartimento di ...
  • 12 篇 università degli...
  • 12 篇 ligo laboratory ...
  • 12 篇 university of ma...
  • 12 篇 stony brook univ...
  • 12 篇 indian institute...
  • 11 篇 infn sezione di ...
  • 11 篇 national tsing h...
  • 11 篇 department of ph...

作者

  • 13 篇 yue zhao
  • 12 篇 r. takahashi
  • 12 篇 j. c. bayley
  • 12 篇 k. komori
  • 12 篇 t. kajita
  • 12 篇 f. hellman
  • 12 篇 m. kinley-hanlon
  • 12 篇 t. mcrae
  • 12 篇 a. parisi
  • 12 篇 t. sawada
  • 12 篇 s. rowan
  • 12 篇 s. m. aronson
  • 12 篇 v. p. mitrofanov
  • 12 篇 a. j. tanasijczu...
  • 12 篇 g. moreno
  • 12 篇 g. hemming
  • 12 篇 a. z. jan
  • 12 篇 r. c. walet
  • 12 篇 b. f. neil
  • 12 篇 c. kim

语言

  • 544 篇 英文
  • 53 篇 其他
  • 9 篇 中文
  • 1 篇 法文
  • 1 篇 朝鲜文
检索条件"机构=Research and Development Institute of Robotics and Control Systems"
610 条 记 录,以下是361-370 订阅
排序:
A kind of online self-tuning smith predictor
A kind of online self-tuning smith predictor
收藏 引用
IEEE International Conference on Mechatronics and Automation
作者: Xu Chen Fei Meng Xiaopeng Chen Qiang Huang Intelligent Robotics Institute Beijing Institute of Technology Beijing China Beijing Advanced Innovation Center for Intelligent Robots and System Beijing Institute of Technology Beijing China Key Laboratory of Biomimetic Robots and Systems Beijing Institute of Technology Beijing China International Joint Research Laboratory of Biomimetic Key Laboratory of Intelligent Control and Decision of Comp lex System Beijing China
This paper presents an online self-tuning Smith Predictor for the First Order Plus Dead Time Model (FOPDT). It can tune time delay through oscillated input and output. Realtime phase difference detection is used to ob... 详细信息
来源: 评论
26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 Antwerp, Belgium. 15-20 July 2017 Abstracts
收藏 引用
BMC NEUROSCIENCE 2017年 第SUPPL 1期18卷 95-176页
作者: [Anonymous] Department of Neuroscience Yale University New Haven CT 06520 USA Department Physiology & Pharmacology SUNY Downstate Brooklyn NY 11203 USA NYU School of Engineering 6 MetroTech Center Brooklyn NY 11201 USA Departament de Matemàtica Aplicada Universitat Politècnica de Catalunya Barcelona 08028 Spain Institut de Neurobiologie de la Méditerrannée (INMED) INSERM UMR901 Aix-Marseille Univ Marseille France Center of Neural Science New York University New York NY USA Aix-Marseille Univ INSERM INS Inst Neurosci Syst Marseille France Laboratoire de Physique Théorique et Modélisation CNRS UMR 8089 Université de Cergy-Pontoise 95300 Cergy-Pontoise Cedex France Department of Mathematics and Computer Science ENSAT Abdelmalek Essaadi’s University Tangier Morocco Laboratory of Natural Computation Department of Information and Electrical Engineering and Applied Mathematics University of Salerno 84084 Fisciano SA Italy Department of Medicine University of Salerno 84083 Lancusi SA Italy Dipartimento di Fisica Università degli Studi Aldo Moro Bari and INFN Sezione Di Bari Italy Data Analysis Department Ghent University Ghent Belgium Coma Science Group University of Liège Liège Belgium Cruces Hospital and Ikerbasque Research Center Bilbao Spain BIOtech Department of Industrial Engineering University of Trento and IRCS-PAT FBK 38010 Trento Italy Department of Data Analysis Ghent University Ghent 9000 Belgium The Wellcome Trust Centre for Neuroimaging University College London London WC1N 3BG UK Department of Electronic Engineering NED University of Engineering and Technology Karachi Pakistan Blue Brain Project École Polytechnique Fédérale de Lausanne Lausanne Switzerland Departement of Mathematics Swansea University Swansea Wales UK Laboratory for Topology and Neuroscience at the Brain Mind Institute École polytechnique fédérale de Lausanne Lausanne Switzerland Institute of Mathematics University of Aberdeen Aberdeen Scotland UK Department of Integrativ
来源: 评论
26th Annual Computational Neuroscience Meeting (CNS*2017) of the Organization for Computational Neuroscience Antwerp, Belgium, July 15-20, 2017
收藏 引用
BMC NEUROSCIENCE 2017年 第SUPPL 1期18卷 59-59页
作者: [Anonymous] Indiana University Purdue University Indianapolis Indianapolis IN 46032 USA Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN 46032 USA Department of Mathematics East Carolina University Greenville NC 27858 USA Jülich Supercomputing Centre Forschungszentrum Jülich 52425 Jülich Germany Future Systems Swiss National Supercomputing Centre 8092 Zurich Switzerland User Engagement and Support Swiss National Supercomputing Centre 6900 Lugano Switzerland Institut de Neurosciences des Systèmes Aix Marseille Univ 13005 Marseille France Simulation Lab Neuroscience Forschungszentrum Jülich Jülich Germany Department of Experimental Psychology Ghent University 9000 Ghent Belgium Donders Center for Cognitive Neuroimaging Radboud University 6525HR Nijmegen The Netherlands Department of Electrical Computer and Energy Engineering University of Colorado Boulder CO 80309 USA Department of Neurosurgery Johns Hopkins School of Medicine Baltimore MD 21287 USA Department of Neurology Johns Hopkins School of Medicine Baltimore MD 21287 USA Department of Otolaryngology Johns Hopkins School of Medicine Baltimore MD 21287 USA INSERM U968 Paris France Sorbonne Universités UPMC University Paris 06 UMR_S 968 Institut de la Vision Paris France CNRS UMR_7210 Paris France Department of Computer Architecture and Technology University of Granada (CITIC) Granada Spain Sorbonne Universités UPMC Univ Paris 06 INSERM CNRS Institut de la Vision Paris France Department of Adaptive Machine Systems Osaka University Osaka Japan Department of Computer Science University of Cergy-Pontoise Cergy-Pontoise France Department of Physics and Astronomy College of Charleston Charleston SC 29424 USA School of Physics Faculty of Science University of Sydney Sydney NSW 2006 Australia Center of Excellence for Integrative Brain Function Australian Research Council Sydney Australia Max Planck Institute for Human Cognitive and Brain Sciences Saxony Lei
来源: 评论
Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge
arXiv
收藏 引用
arXiv 2018年
作者: Bakas, Spyridon Reyes, Mauricio Jakab, Andras Bauer, Stefan Rempfler, Markus Crimi, Alessandro Shinohara, Russell Takeshi Berger, Christoph Ha, Sung Min Rozycki, Martin Prastawa, Marcel Alberts, Esther Lipkova, Jana Freymann, John Kirby, Justin Bilello, Michel Fathallah-Shaykh, Hassan M. Wiest, Roland Kirschke, Jan Wiestler, Benedikt Colen, Rivka Kotrotsou, Aikaterini Lamontagne, Pamela Marcus, Daniel Milchenko, Mikhail Nazeri, Arash Weber, Marc-Andr Mahajan, Abhishek Baid, Ujjwal Gerstner, Elizabeth Kwon, Dongjin Acharya, Gagan Agarwal, Manu Alam, Mahbubul Albiol, Alberto Albiol, Antonio Albiol, Francisco J. Alex, Varghese Allinson, Nigel Amorim, Pedro H.A. Amrutkar, Abhijit Anand, Ganesh Andermatt, Simon Arbel, Tal Arbelaez, Pablo Avery, Aaron Azmat, Muneeza Pranjal, B. Bai, Wenjia Banerjee, Subhashis Barth, Bill Batchelder, Thomas Batmanghelich, Kayhan Battistella, Enzo Beers, Andrew Belyaev, Mikhail Bendszus, Martin Benson, Eze Bernal, Jose Bharath, Halandur Nagaraja Biros, George Bisdas, Sotirios Brown, James Cabezas, Mariano Cao, Shilei Cardoso, Jorge M. Carver, Eric N. Casamitjana, Adri Castillo, Laura Silvana Cat, Marcel Cattin, Philippe Cérigues, Albert Chagas, Vinicius S. Chandra, Siddhartha Chang, Yi-Ju Chang, Shiyu Chang, Ken Chazalon, Joseph Chen, Shengcong Chen, Wei Chen, Jefferson W. Chen, Zhaolin Cheng, Kun Choudhury, Ahana Roy Chylla, Roger Clrigues, Albert Colleman, Steven Colmeiro, Ramiro German Rodriguez Combalia, Marc Costa, Anthony Cui, Xiaomeng Dai, Zhenzhen Dai, Lutao Daza, Laura Alexandra Deutsch, Eric Ding, Changxing Dong, Chao Dong, Shidu Dudzik, Wojciech Eaton-Rosen, Zach Egan, Gary Escudero, Guilherme Estienne, Tho Everson, Richard Fabrizio, Jonathan Fan, Yong Fang, Longwei Feng, Xue Ferrante, Enzo Fidon, Lucas Fischer, Martin French, Andrew P. Fridman, Naomi Fu, Huan Fuentes, David Gao, Yaozong Gates, Evan Gering, David Gholami, Amir Gierke, Willi Glocker, Ben Gong, Mingming Gonzlez-Vill, Sandra Grosges, T. Guan, Yuanfang Guo, Sheng Gupta, Sudeep Han, Woo-Sup Han, Il Song Harmuth, Ko Center for Biomedical Image Computing and Analytics University of Pennsylvania PhiladelphiaPA United States Department of Radiology Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Institute for Surgical Technology and Biomechanics University of Bern Bern Switzerland Center for MR-Research University Children's Hospital Zurich Zurich Switzerland Support Centre for Advanced Neuroimaging Inselspital Institute for Diagnostic and Interventional Neuroradiology Bern University Hospital Bern Switzerland University Hospital of Zurich Zurich Switzerland Center for Clinical Epidemiology and Biostatistics University of Pennsylvania Philadelphia United States Image-Based Biomedical Modeling Group Technical University of Munich Munich Germany Icahn School of Medicine Mount Sinai Health System New YorkNY United States Leidos Biomedical Research Inc. Frederick National Laboratory for Cancer Research FrederickMD21701 United States Cancer Imaging Program National Cancer Institute National Institutes of Health BethesdaMD20814 United States Department of Neurology University of Alabama at Birmingham BirminghamAL United States Department of Diagnostic Radiology University of Texas MD Anderson Cancer Center HoustonTX United States Department of Psychology Washington University St. LouisMO United States Neuroimaging Informatics and Analysis Center Washington University St. LouisMO United States Department of Radiology Washington University St. LouisMO United States Institute of Diagnostic and Interventional Radiology Pediatric Radiology and Neuroradiology University Medical Center Rostock Ernst-Heydemann-Str. 6 Rostock18057 Germany Tata Memorial Centre Homi Bhabha National Institute Mumbai India Shri Guru Gobind Singhji Institute of Engineering and Technology Nanded India NVIDIA Santa Clara
Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrot... 详细信息
来源: 评论
control system for neuro-prostheses integrating induced and volitional effort  9
Control system for neuro-prostheses integrating induced and ...
收藏 引用
9th IFAC Symposium on Biological and Medical systems, BMS 2015
作者: Ambrosini, E. Schauer, T. Klauer, C. Pedrocchi, A. Ferrigno, G. Ferrante, S. NeuroEngineering and Medical Robotics Laboratory NearLab Department of Electronics Information and Bioengineering Politecnico di Milano Italy Control Systems Group Technische Universität Berlin Germany Physical Medicine and Rehabilitation Unit Scientific Institute of Lissone Institute of Care and Research Salvatore Maugeri Foundation IRCCS Lissone Italy
To increase the rehabilitation outcomes of stroke patients with weak residual muscle activity, a novel control strategy for Functional Electrical Stimulation (FES) was designed and tested during a tracking task. The s... 详细信息
来源: 评论
A novel IEG strategy for realistically modeled seeker-less interceptors
A novel IEG strategy for realistically modeled seeker-less i...
收藏 引用
AIAA Guidance, Navigation, and control Conference 2015, MGNC 2015 - Held at the AIAA SciTech Forum 2015
作者: Saroj Kumar, G. Ghose, Debasish Vengadarajan, A. Electronics and Radar Development Establishment Bangalore560093 India Guidance Control and Decision Systems Laboratory Dept. of Aerospace Engineering Indian Institute of Science Bangalore560012 India Defence Research and Development Organization Bangalore560093 India Dept. of Aerospace Engineering IISc Bangalore560012 India
In this paper, an integrated estimation/guidance (IEG) strategy, that combines interactive multiple model (IMM) estimator with differential game guidance law (DGL), is proposed for realistically modeled seeker-less in... 详细信息
来源: 评论
Coherency-independent structured model reduction of power systems
Coherency-independent structured model reduction of power sy...
收藏 引用
IEEE General Meeting Power& Energy Society
作者: Christopher Sturk Luigi Vanfretti Yuwa Chompoobutrgool Henrik Sandberg Automatic Control KTH Royal Institute of Technology Research and Development Statnett SF Electric Power Systems KTH Royal Institute of Technology
This paper proposes a new model reduction algorithm for power systems based on an extension of balanced truncation. The algorithm is applicable to power systems which are divided into a study area which requires a hig... 详细信息
来源: 评论
Coherency-independent structured model reduction of power systems
Coherency-independent structured model reduction of power sy...
收藏 引用
Innovative Smart Grid Technologies (ISGT)
作者: Christopher Sturk Luigi Vanfretti Yuwa Chompoobutrgool Henrik Sandberg Automatic Control Lab KTH Royal Institute of Technology Research & Development Statnett SF Electric Power Systems KTH Royal Institute of Technology
This paper proposes a new model reduction algorithm for power systems based on an extension of balanced truncation. The algorithm is applicable to power systems which are divided into a study area which requires a hig... 详细信息
来源: 评论
The Economics of Using Electric Vehicles for Vehicle to Building Applications Considering the Effect of Battery Degradation
The Economics of Using Electric Vehicles for Vehicle to Buil...
收藏 引用
Annual Conference of the IEEE Industrial Electronics Society
作者: Ahmad GHADERI Amir Ali FOROUGH NASSIRAEI Research & Development Department Automotive Motor and Electronic Control Group Graduate School of Life Science and Systems Engineering Kyushu Institute of Technology
It is expected that the number of electric drive vehicles (EDVs) would grow rapidly in the coming years. Considering cars are parked over 92% of the time, the excess batteries capacity of EVs could be used to support ... 详细信息
来源: 评论
development and control of Hybrid Hardware Engine Simulator
Development and Control of Hybrid Hardware Engine Simulator
收藏 引用
Conference of the Society of Instrument and control Engineers of Japan
作者: K.W. Seo Y. Kaneda M. Yamakita N. Kamamichi J. Ishikawa A. Ohata K. Furuta Department of Mechanical Control Systems Eng. Tokyo Institute of Technology Tokyo Metropolitan Industrial Technology Research Institute Department of Robotics and Mechatronics Tokyo Denki University Toyota Motor Co. Higashifuji Technical Center
In this paper a novel real-time engine simulator which is combined with partial mechanical hardware system and numerical simulator. In the hardware, the actual piston-clank mechanism is used, and the thrust force is g... 详细信息
来源: 评论