作者:
TUCK, EFPATTERSON, DPSTUART, JRLAWRENCE, MHCalling Communications Corporation. 1900 West Garvey Ave
South. Suite 200 West Covina CA 91790 USA. Chairman of Calling Communications Corporation. He is also the Managing Director of Kinship Venture Management
Inc. the general partner of Kinship Partners 11 and a General Partner of Boundary the general partner of The Boundary Fund. As a venture capitalist he has founded or participated in founding several telecommunications companies including Calling Communications Corporation Magellan Systems Corporation
manufactures of Global Positioning System receivers Applied Digital Access
manufacturer of DS-3 test access and network performance monitoring equipment Endgate Technology Corporation
specialists in satellite phased array antennas and Poynting Systems Corporation. now a division of Reliance Corporation
manufacturers of fibre optic transport equipment. He was a founder of Kebby Microwave Corporation where he invented the first solid-state. frequency-modulated commercial microwave link system. The company was acquired by ITT Corporation where he rose to the position of V.P. and Technical Director of ITT North America Telecommunications Inc. Subsequently he was V.P. of Marketing and Engineering at American Telecommunications Inc. (ATC). He was founding Director of American Telecom Inc. a joint venture between ATC and Fujitsu and has served on more than 20 boards of directors including those of three public companies. He has authored articles on microwave engineering and telephone signalling and was a contributor to Reference Data For Radio Engineers. He is a graduate of the University of Missouri at Rolla where he was later awarded an honorary Professional degree and serves on its Academy of Electrical Engineering. Mr Tuck is a Senior Member of the IEEE a Fellow of the Institution of Engineers (Australia) a Professional Member of the AIAA and a registered professional engineer in three states. More than 25 years of experience in the telecommunications industry where he has been responsibl
There is a very large demand for basic telephone service in developing nations, and remote parts of industrialized nations, which cannot be met by conventional wireline and cellular systems. This is the world's la...
详细信息
There is a very large demand for basic telephone service in developing nations, and remote parts of industrialized nations, which cannot be met by conventional wireline and cellular systems. This is the world's largest unserved market. We describe a system which uses recent advances in active phased arrays, fast-packet switching technology, adaptive routeing, and light spacecraft technology, in part based on the work of the Jet Propulsion Laboratory and on recently-declassified work done on the Strategic Defense Initiative, to make it possible to address this market with a global telephone network based on a large low-Earth-orbit constellation of identical satellites. A telephone utility can use such a network to provide the same modern basic and enhanced telephone services offered by telephone utilities in the urban centres of fully-industrialized nations. Economies of scale permit capital and operating costs per subscriber low enough to provide a service to all subscribers, regardless of location, at prices comparable to the same services in urban areas of industrialized nations, while generating operating profits great enough to attract the capital needed for its construction. The bandwidth needed to support the capacity needed to gain these economies of scale requires that the system use K(alpha)-band frequencies. This choice of frequencies places unusual constraints on the network design, and in particular forces the use of a large number of satellites. Global demand for basic and enhanced telephone service is great enough to support at least three networks of the size described herein. The volume of advanced components, and services such as launch services, required to construct and replace these networks is sufficient to propel certain industries to market leadership positions in the early 21st Century.
A laser cladding process has been developed and is now in production for the cladding of new aircraft carrier catapult components. The Service Life Extension Program (SLEP) Office of Naval Sea Systems Command (NavSea)...
A laser cladding process has been developed and is now in production for the cladding of new aircraft carrier catapult components. The Service Life Extension Program (SLEP) Office of Naval Sea Systems Command (NavSea) suggested that this process be utilized for the refurbishment of catapult tracks. Early experiments were conducted by the Naval Surface Warfare Center in conjunction with the IIT research Institute. The program was then transitioned to the appliedresearch Laboratory, Pennsylvania State University (ARL Penn State) under the sponsorship of the Naval Air Systems Command (NavAir)/Navy MANTECH program, thus providing an effective solution to a NavSea/NavAir interface hardware problem. ARL Penn State was responsible for the production and evaluation of six laser clad aircraft carrier catapult tracks as part of a program sponsored and funded by NavAir Code 5512. Six catapult tracks that had been taken out of service because of excessive wear were laser clad at the Westinghouse Electric research and development Center (Now ''science and technology Center'') for ARL Penn State. The composition of the clads was Inconel 625, Stellite 6/Stainless Steel 304, and Ferrelium 255. The tracks were machined and installed on the USS Constellation. Wear measurements were taken for the laser clad tracks and standard tracks ahead and behind the clad tracks. After 7,161 launches, the tracks were removed and returned to ARL Penn State for evaluation. The evaluation indicated that impact damage was observed on one track. No additional defects related to operations were found. Wear data indicated that the wear rate for it was 25%-50% less than non-clad. The results indicated that rejectable tracks (and one piece trough covers) could be successfully laser clad for extended operating life at acceptable costs. With emphasis for the future on a more affordable Navy, the need for viable refurbishment processes will be necessary for extending life and performance for the 21st century
作者:
ZITZMAN, LHFALATKO, SMPAPACH, JLDr. Lewis H. Zitzman:is the group supervisor of the Advanced Systems Design Group
Fleet Systems Department The Johns Hopkins University Applied Physics Laboratory (JHU/APL). He has been employed at JHU/APL since 1972 performing applied research in computer science and in investigating and applying advanced computer technologies to Navy shipboard systems. He is currently chairman of Aegis Computer Architecture Data Bus and Fiber Optics Working Group from which many concepts for this paper were generated. Dr. Zitzman received his B.S. degree in physics from Brigham Young University in 1963 and his M.S. and Ph.D. degrees in physics from the University of Illinois in 1967 and 1972 respectively. Stephen M. Falatko:was a senior engineering analyst in the Combat Systems Engineering Department
Comptek Research Incorporated for the majority of this effort. He is currently employed at ManTech Services Corporation. During his eight-year career first at The Johns Hopkins University Applied Physics Laboratory and currently with ManTech Mr. Falatko's work has centered around the development of requirements and specifications for future Navy systems and the application of advanced technology to Navy command and control systems. He is a member of both the Computer Architecture Fiber Optics and Data Bus Working Group and the Aegis Fiber Optics Working Group. Mr. Falatko received his B.S. degree in aerospace engineering with high distinction from the University of Virginia in 1982 and his M.S. degree in applied physics from The Johns Hopkins University in 1985. Mr. Falatko is a member of Tau Beta Pi Sigma Gamma Tau the American Society of Naval Engineers and the U.S. Naval Institute. Janet L. Papach:is a section leader and senior engineering analyst in the Combat Systems Engineering Department
Comptek Research Incorporated. She has ten years' experience as an analyst supporting NavSea Spa War and the U.S. Department of State. She currently participates in working group efforts under Aegis Combat System Doctrin
This paper sets forth computer systems architecture concepts for the combat system of the 2010–2030 timeframe that satisfy the needs of the next generation of surface combatants. It builds upon the current Aegis comp...
详细信息
This paper sets forth computer systems architecture concepts for the combat system of the 2010–2030 timeframe that satisfy the needs of the next generation of surface combatants. It builds upon the current Aegis computer systems architecture, expanding that architecture while preserving, and adhering to, the Aegis fundamental principle of thorough systems engineering, dedicated to maintaining a well integrated, highly reliable, and easily operable combat system. The implementation of these proposed computer systems concepts in a coherent architecture would support the future battle force capable combat system and allow the expansion necessary to accommodate evolutionary changes in both the threat environment and the technology then available to effectively counter that threat. Changes to the current Aegis computer architecture must be carefully and effectively managed such that the fleet will retain its combat readiness capability at all times. This paper describes a possible transition approach for evolving the current Aegis computer architecture to a general architecture for the future. The proposed computer systems architecture concepts encompass the use of combinations of physically distributed, microprocessor-based computers, collocated with the equipment they support or embedded within the equipment itself. They draw heavily on widely used and available industry standards, including instruction set architectures (ISAs), backplane busses, microprocessors, computer programming languages and development environments, and local area networks (LANs). In this proposal, LANs, based on fiber optics, will provide the interconnection to support system expandability, redundancy, and higher data throughput rates. A system of cross connected LANs will support a high level of combat system integration, spanning the major warfare areas, and will facilitate the coordination and development of a coherent multi-warfare tactical picture supporting the future combatant command st
作者:
CRANE, RMMACANDER, ABRoger M. Crane:isa materials engineer in the Ship Materials Engineering Department of the David W. Taylor Naval Ship Research and Development Center (DTNSRDC)
Annapolis Md. He is presently involved in the development of fiber reinforced advanced composite materials for various naval applications. He received his B.S. degree in physics/engineering and his B.A. degree in mathematics: physical applications from Loyola College. He has finished his course work for his M.S. degree in materials science at the University of Delaware and is currently enrolled at the Johns Hopkins University. Mr. Crane is a member of Society of Experimental Stress Analysis and the Society of Physics Students. Aleksander B. Macander:is a materials engineer in the Ship Materials Engineering Department
DTNSRDC Annapolis Md. He is presently involved in the development of fiber reinforced advanced composite materials for various naval applications. Prior to joining DTNSRDC in 1973 he was associated with the Johns-Manville Corporation Denver Colo and also with the Naval Applied Science Laboratory Brooklyn N.Y. He received his B.S. degree in mechanical engineering from Fairleigh Dickinson University and his M.S. degree in mechanical engineering (plastics) from Stevens Institute of Technology. Mr. Macander is a member of ASTM the Severn Technical Society and the International Organization for Standardization/Technical Committee 61 on Plastics.
There are a limited number of nondestructive techniques available for field inspection of large composite structures and practically none for inservice inspection. An innovative damage assessment system is proposed wh...
详细信息
There are a limited number of nondestructive techniques available for field inspection of large composite structures and practically none for inservice inspection. An innovative damage assessment system is proposed which uses an optical fiber mesh implanted into the body of a fiber reinforced composite structure. This mesh would become an integral part of the structure on fabrication. The selection of the mesh fibers would be predicated on their strain to failure characteristics and strain compatibility with the base composite reinforcing fibers. This optical system will be capable of locating damage, assessing severity and monitoring damage growth. A successful implementation of the total damage assessment system would involve the interaction of the optical fiber mesh with an adequately designed interrogative electronic package. This paper focuses on the former aspect of the total system. It will address some recent experimental work showing the practicality of the concept for large, complex composite structure.
A ship design methodology is presented for developing hull forms that attain improved performance in both seakeeping and resistance. Contrary to traditional practice, the methodology starts with developing a seakeepin...
A ship design methodology is presented for developing hull forms that attain improved performance in both seakeeping and resistance. Contrary to traditional practice, the methodology starts with developing a seakeeping-optimized hull form without making concessions to other performance considerations, such as resistance. The seakeeping-optimized hull is then modified to improve other performance characteristics without degrading the seakeeping. Presented is a point-design example produced by this methodology. Merits of the methodology and the point design are assessed on the basis of theoretical calculations and model experiments. This methodology is an integral part of the Hull Form Design System (HFDS) being developed for computer-supported naval ship design. The modularized character of HFDS and its application to hull form development are discussed.
作者:
FROSCH, RAPresidentAmerican Association of Engineering Societies
Inc Dr. Robert A. Frosch born in New York City on 22 May 1928
attended Columbia University from which he received his B.A. degree in 1947 his M.A. degree in 1949 and his Ph.D. degree in 1952 all in the field of Theoretical Physics. While completing his studies for his doctorate he joined Columbia's Hudson Laboratories in 1951 and worked on naval research projects as a Research Scientist until 1958 when he became the Director Hudson Laboratories a post he held until 1963. From 1965 to 1966
he was Deputy Director Advanced Research Projects Agency (APRA) Department of Defense (DOD) having first joined ARPA in 1963 as the Director for Nuclear Test Detection the position he held until 1965. Since 1969 he also has served as the DOD member of the Committee for Policy Review National Council of Marine Resources and Engineering Development and in 1967 and 1970 as the Chairman of the U.S. Delegation to the Intergovernmental Oceanographic Commission meetings at UNESCO in Paris. In addition he was the Assistant Secretary of the Navy for Research & Development from 1966 to 1973 Assistant Executive Director of the United Nations Environment Program
with the rank of Assistant Secretary General of the United Nations from 1973 to 1975 and Assistant Director for Applied Oceanography at the Woods Hole Oceanographic Institution from 1975 until mid-1977.In June 1977
he became the Administrator of the National Aeronautics and Space Agency (NASA) the position he held prior to joining the American Association of Engineering Societies (AAES) Incorporated. On 20 January 1981 he was elected to his present post as President AAES. Additionally he was the Sea Grant Lecturer for the Massachusetts Institute of Technology in 1974 and currently is a National Lecturer for Sigma Xi. During his distinguished career
Dr. Frosch has been the recipient of numerous awards among which are the Arthur S. Flemming Award in 1966 the Navy Distinguished Public Service Award in 1
Geospatial Technologies and Climate Change describes various approaches from different countries on how to use geospatial technologies to help solving climate change issues. It also details how different geospatial te...
详细信息
ISBN:
(数字)9783319016894
ISBN:
(纸本)9783319016887;9783319343846
Geospatial Technologies and Climate Change describes various approaches from different countries on how to use geospatial technologies to help solving climate change issues. It also details how different geospatial technologies (remote sensing, Geographical Information System…) can be used to help with climate monitoring and modeling, how to work with them and what to be careful about. This book is written by scientific experts from four different continents. Written in a comprehensive and complete way, this book is essential reading material for graduate and undergraduate students interested in these techniques and in climate change.
Connected Autonomous Vehicle (CAV) Driving, as a data-driven intelligent driving technology within the Internet of Vehicles (IoV), presents significant challenges to the efficiency and security of real-time data manag...
详细信息
Connected Autonomous Vehicle (CAV) Driving, as a data-driven intelligent driving technology within the Internet of Vehicles (IoV), presents significant challenges to the efficiency and security of real-time data management. The combination of Web3.0 and edge content caching holds promise in providing low-latency data access for CAVs’ real-time applications. Web3.0 enables the reliable pre-migration of frequently requested content from content providers to edge nodes. However, identifying optimal edge node peers for joint content caching and replacement remains challenging due to the dynamic nature of traffic flow in IoV. Addressing these challenges, this article introduces GAMA-Cache, an innovative edge content caching methodology leveraging Graph Attention Networks (GAT) and Multi-Agent Reinforcement Learning (MARL). GAMA-Cache conceptualizes the cooperative edge content caching issue as a constrained Markov decision process. It employs a MARL technique predicated on cooperation effectiveness to discern optimal caching decisions, with GAT augmenting information extracted from adjacent nodes. A distinct collaborator selection mechanism is also developed to streamline communication between agents, filtering out those with minimal correlations in the vector input to the policy network. Experimental results demonstrate that, in terms of service latency and delivery failure, the GAMA-Cache outperforms other state-of-the-art MARL solutions for edge content caching in IoV.
暂无评论