咨询与建议

限定检索结果

文献类型

  • 28 篇 期刊文献
  • 26 篇 会议

馆藏范围

  • 54 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 38 篇 工学
    • 27 篇 计算机科学与技术...
    • 27 篇 软件工程
    • 16 篇 信息与通信工程
    • 8 篇 光学工程
    • 4 篇 机械工程
    • 4 篇 化学工程与技术
    • 3 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 生物工程
    • 2 篇 仪器科学与技术
    • 2 篇 测绘科学与技术
    • 1 篇 力学(可授工学、理...
    • 1 篇 材料科学与工程(可...
    • 1 篇 冶金工程
    • 1 篇 控制科学与工程
    • 1 篇 轻工技术与工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 安全科学与工程
  • 23 篇 理学
    • 17 篇 物理学
    • 4 篇 数学
    • 4 篇 化学
    • 3 篇 生物学
    • 3 篇 统计学(可授理学、...
    • 1 篇 大气科学
  • 12 篇 管理学
    • 9 篇 图书情报与档案管...
    • 6 篇 管理科学与工程(可...
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学
    • 1 篇 药学(可授医学、理...

主题

  • 8 篇 convolution
  • 4 篇 distillation
  • 3 篇 image reconstruc...
  • 2 篇 hidden markov mo...
  • 2 篇 generative adver...
  • 2 篇 image segmentati...
  • 2 篇 vectors
  • 2 篇 noise
  • 2 篇 trajectory
  • 2 篇 pixels
  • 2 篇 transforms
  • 2 篇 computer vision
  • 2 篇 color
  • 1 篇 conferences
  • 1 篇 comparing
  • 1 篇 datasets
  • 1 篇 recognition (psy...
  • 1 篇 semantic segment...
  • 1 篇 compressed sensi...
  • 1 篇 mean absolute er...

机构

  • 19 篇 shanghai ai labo...
  • 17 篇 shenzhen key lab...
  • 14 篇 university of ch...
  • 11 篇 sensetime resear...
  • 11 篇 shanghai artific...
  • 9 篇 shenzhen key lab...
  • 7 篇 department of in...
  • 6 篇 shenzhen key lab...
  • 6 篇 the university o...
  • 6 篇 shenzhen key lab...
  • 5 篇 shenzhen key lab...
  • 5 篇 the chinese univ...
  • 5 篇 university of ma...
  • 4 篇 shanghai jiao to...
  • 4 篇 siat branch shen...
  • 4 篇 arc lab tencent ...
  • 3 篇 shanghai ai lab
  • 3 篇 institute of med...
  • 3 篇 state key labora...
  • 3 篇 national univers...

作者

  • 22 篇 qiao yu
  • 13 篇 wang yali
  • 10 篇 dong chao
  • 8 篇 chen xiangyu
  • 8 篇 yu qiao
  • 6 篇 he junjun
  • 6 篇 li hongsheng
  • 6 篇 chao dong
  • 5 篇 gu jinjin
  • 5 篇 li kunchang
  • 5 篇 liu jianzhuang
  • 5 篇 ren jimmy s.
  • 4 篇 chen shifeng
  • 4 篇 liu jianbo
  • 4 篇 tang xiaoou
  • 3 篇 gao peng
  • 3 篇 song guanglu
  • 3 篇 liu xina
  • 3 篇 li zheyuan
  • 3 篇 hu jinfan

语言

  • 51 篇 英文
  • 2 篇 其他
  • 1 篇 中文
检索条件"机构=Researcher at Shenzhen Key Laboratory of Computer Vision and Pattern Recognition"
54 条 记 录,以下是1-10 订阅
Efficient Image Super-Resolution Using Vast-Receptive-Field Attention  17th
Efficient Image Super-Resolution Using Vast-Receptive-Field ...
收藏 引用
17th European Conference on computer vision, ECCV 2022
作者: Zhou, Lin Cai, Haoming Gu, Jinjin Li, Zheyuan Liu, Yingqi Chen, Xiangyu Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China Shanghai AI Laboratory Shanghai China The University of Sydney Sydney Australia University of Macau Zhuhai China
The attention mechanism plays a pivotal role in designing advanced super-resolution (SR) networks. In this work, we design an efficient SR network by improving the attention mechanism. We start from a simple pixel att... 详细信息
来源: 评论
UDC-UNet: Under-Display Camera Image Restoration via U-shape Dynamic Network  17th
UDC-UNet: Under-Display Camera Image Restoration via U-shap...
收藏 引用
17th European Conference on computer vision, ECCV 2022
作者: Liu, Xina Hu, Jinfan Chen, Xiangyu Dong, Chao Shenzhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China University of Macau Zhuhai China Shanghai AI Laboratory Shanghai China
Under-Display Camera (UDC) has been widely exploited to help smartphones realize full-screen displays. However, as the screen could inevitably affect the light propagation process, the images captured by the UDC syste... 详细信息
来源: 评论
Finding discriminative filters for specific degradations in blind super-resolution  21
Finding discriminative filters for specific degradations in ...
收藏 引用
Proceedings of the 35th International Conference on Neural Information Processing Systems
作者: Liangbin Xie Xintao Wang Chao Dong Zhongang Qi Ying Shan Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences and University of Chinese Academy of Sciences and ARC Lab Tencent PCG ARC Lab Tencent PCG Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences and Shanghai AI Laboratory Shanghai China
Recent blind super-resolution (SR) methods typically consist of two branches, one for degradation prediction and the other for conditional restoration. However, our experiments show that a one-branch network can achie...
来源: 评论
Neural Transformation Fields for Arbitrary-Styled Font Generation
Neural Transformation Fields for Arbitrary-Styled Font Gener...
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Bin Fu Junjun He Jianjun Wang Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shanghai Artificial Intelligence Laboratory
Few-shot font generation (FFG), aiming at generating font images with a few samples, is an emerging topic in recent years due to the academic and commercial values. Typically, the FFG approaches follow the style-conte...
来源: 评论
Generate Like Experts: Multi-Stage Font Generation by Incorporating Font Transfer Process into Diffusion Models
Generate Like Experts: Multi-Stage Font Generation by Incorp...
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Bin Fu Fanghua Yu Anran Liu Zixuan Wang Jie Wen Junjun He Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences The University of Hong Kong Harbin Institute of Technology Shenzhen Shanghai Artificial Intelligence Laboratory
Few-shot font generation (FFG) produces stylized font images with a limited number of reference samples, which can significantly reduce labor costs in manual font designs. Most existing FFG methods follow the style-co... 详细信息
来源: 评论
Tile selection method based on error minimization for photomosaic image creation
收藏 引用
Frontiers of computer Science 2021年 第3期15卷 165-172页
作者: Hongbo ZHANG Xin GAO Jixiang DU Qing LEI Lijie YANG Department of Computer Science and Technology Huaqiao UniversityXiamen 361021China Fujian Key Laboratory of Big Data Intelligence and Security Huaqiao UniversityXiamen 361021China Xiamen Key Laboratory of Computer Vision and Pattern Recognition Huaqiao UniversityXiamen 361021China School of Computer Science and Technology Harbin Institute of TechnologyShenzhen 518055China
Photomosaic images are composite images composed of many small images called *** its overall visual effect,a photomosaic image is similar to the target image,and photomosaics are also called“montage art”.Noisy block... 详细信息
来源: 评论
DegAE: A New Pretraining Paradigm for Low-Level vision
DegAE: A New Pretraining Paradigm for Low-Level Vision
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Yihao Liu Jingwen He Jinjin Gu Xiangtao Kong Yu Qiao Chao Dong Shanghai Artificial Intelligence Laboratory ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences The University of Sydney
Self-supervised pretraining has achieved remarkable success in high-level vision, but its application in low-level vision remains ambiguous and not well-established. What is the primitive intention of pretraining? Wha...
来源: 评论
UNIFORMER: UNIFIED TRANSFORMER FOR EFFICIENT SPATIOTEMPORAL REPRESENTATION LEARNING  10
UNIFORMER: UNIFIED TRANSFORMER FOR EFFICIENT SPATIOTEMPORAL ...
收藏 引用
10th International Conference on Learning Representations, ICLR 2022
作者: Li, Kunchang Wang, Yali Gao, Peng Song, Guanglu Liu, Yu Li, Hongsheng Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China Shanghai AI Laboratory Shanghai China SenseTime Research The Chinese University of Hong Kong Hong Kong
It is a challenging task to learn rich and multi-scale spatiotemporal semantics from high-dimensional videos, due to large local redundancy and complex global dependency between video frames. The recent advances in th... 详细信息
来源: 评论
Activating More Pixels in Image Super-Resolution Transformer
Activating More Pixels in Image Super-Resolution Transformer
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Xiangyu Chen Xintao Wang Jiantao Zhou Yu Qiao Chao Dong State Key Laboratory of Internet of Things for Smart City University of Macau Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shanghai Artificial Intelligence Laboratory ARC Lab Tencent PCG
Transformer-based methods have shown impressive performance in low-level vision tasks, such as image super-resolution. However, we find that these networks can only utilize a limited spatial range of input information...
来源: 评论
MUSES: 3D-Controllable Image Generation via Multi-Modal Agent Collaboration
arXiv
收藏 引用
arXiv 2024年
作者: Ding, Yanbo Zhuang, Shaobin Li, Kunchang Yue, Zhengrong Qiao, Yu Wang, Yali Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China School of Artificial Intelligence University of Chinese Academy of Sciences China Shanghai Artificial Intelligence Laboratory China Shanghai Jiao Tong University China
Despite recent advancements in text-to-image generation, most existing methods struggle to create images with multiple objects and complex spatial relationships in the 3D world. To tackle this limitation, we introduce... 详细信息
来源: 评论