咨询与建议

限定检索结果

文献类型

  • 319 篇 期刊文献
  • 314 篇 会议

馆藏范围

  • 633 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 381 篇 工学
    • 262 篇 计算机科学与技术...
    • 224 篇 软件工程
    • 101 篇 控制科学与工程
    • 94 篇 光学工程
    • 84 篇 信息与通信工程
    • 74 篇 生物工程
    • 58 篇 生物医学工程(可授...
    • 43 篇 电气工程
    • 36 篇 电子科学与技术(可...
    • 31 篇 机械工程
    • 22 篇 仪器科学与技术
    • 16 篇 交通运输工程
    • 15 篇 化学工程与技术
    • 14 篇 动力工程及工程热...
    • 12 篇 建筑学
    • 12 篇 土木工程
  • 220 篇 理学
    • 92 篇 数学
    • 82 篇 物理学
    • 78 篇 生物学
    • 36 篇 统计学(可授理学、...
    • 14 篇 化学
    • 12 篇 系统科学
  • 81 篇 管理学
    • 49 篇 管理科学与工程(可...
    • 34 篇 图书情报与档案管...
    • 18 篇 工商管理
  • 45 篇 医学
    • 43 篇 临床医学
    • 34 篇 基础医学(可授医学...
    • 25 篇 药学(可授医学、理...
    • 10 篇 公共卫生与预防医...
  • 12 篇 农学
  • 9 篇 法学
    • 9 篇 社会学
  • 6 篇 经济学
  • 5 篇 教育学

主题

  • 45 篇 computer vision
  • 43 篇 robot vision sys...
  • 38 篇 laboratories
  • 34 篇 robot sensing sy...
  • 29 篇 cameras
  • 29 篇 intelligent robo...
  • 25 篇 mobile robots
  • 25 篇 robots
  • 23 篇 computer science
  • 20 篇 humans
  • 20 篇 robot kinematics
  • 19 篇 robustness
  • 18 篇 manipulators
  • 18 篇 navigation
  • 18 篇 artificial intel...
  • 18 篇 robotics and aut...
  • 16 篇 shape
  • 14 篇 image segmentati...
  • 14 篇 control systems
  • 13 篇 object detection

机构

  • 25 篇 shenzhen institu...
  • 19 篇 artificial intel...
  • 16 篇 national enginee...
  • 14 篇 guangdong key la...
  • 14 篇 university of ch...
  • 14 篇 embedded vision ...
  • 13 篇 institutes for r...
  • 11 篇 computer vision ...
  • 11 篇 shenzhen key lab...
  • 11 篇 heidelberg
  • 10 篇 guangdong provin...
  • 9 篇 university of sc...
  • 9 篇 computer vision ...
  • 9 篇 department of el...
  • 9 篇 general robotics...
  • 8 篇 computer vision ...
  • 8 篇 computer vision ...
  • 8 篇 state key labora...
  • 7 篇 key laboratory o...
  • 7 篇 embedded vision ...

作者

  • 34 篇 shen linlin
  • 24 篇 kryjak tomasz
  • 21 篇 n.p. papanikolop...
  • 13 篇 timofte radu
  • 13 篇 xie weicheng
  • 10 篇 c.e. smith
  • 9 篇 song siyang
  • 9 篇 zhang hong
  • 9 篇 linlin shen
  • 8 篇 menze bjoern
  • 8 篇 luo cheng
  • 8 篇 douglas g. macha...
  • 7 篇 bakas spyridon
  • 7 篇 zhang zhao
  • 7 篇 hong zhang
  • 7 篇 szolc hubert
  • 7 篇 islam md jahidul
  • 6 篇 liu zhe
  • 6 篇 reinke annika
  • 6 篇 lyons damian m.

语言

  • 595 篇 英文
  • 34 篇 其他
  • 4 篇 中文
检索条件"机构=Robotics & Computer Vision Laboratory Computer and Information Science Department"
633 条 记 录,以下是121-130 订阅
排序:
Fast-moving object counting with an event camera
arXiv
收藏 引用
arXiv 2022年
作者: Bialik, Kamil Kowalczyk, Marcin Blachut, Krzysztof Kryjak, Tomasz Embedded Vision Systems Group Computer Vision Laboratory Department of Automatic Control and Robotics AGH University of Science and Technology Al. Mickiewicza 30 Krakow30-059 Poland
This paper proposes the use of an event camera as a component of a vision system that enables counting of fast-moving objects – in this case, falling corn grains. These type of cameras transmit information about the ... 详细信息
来源: 评论
PointPillars Backbone Type Selection For Fast and Accurate LiDAR Object Detection
TechRxiv
收藏 引用
TechRxiv 2022年
作者: Lis, Konrad Kryjak, Tomasz Embedded Vision Systems Group Computer Vision Laboratory Department of Automatic Control and Robotics AGH University of Science and Technology Al. Mickiewicza 30 Krakow30-059 Poland
3D object detection from LiDAR sensor data is an important topic in the context of autonomous cars and drones. In this paper, we present the results of experiments on the impact of backbone selection of a deep convolu... 详细信息
来源: 评论
FeCAM: Exploiting the Heterogeneity of Class Distributions in Exemplar-Free Continual Learning
arXiv
收藏 引用
arXiv 2023年
作者: Goswami, Dipam Liu, Yuyang Twardowski, Bartlomiej van de Weijer, Joost Department of Computer Science Universitat Autònoma de Barcelona Spain Computer Vision Center Barcelona Spain University of Chinese Academy of Sciences China State Key Laboratory of Robotics Shenyang Institute of Automation Chinese Academy of Sciences China Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences China IDEAS-NCBR
Exemplar-free class-incremental learning (CIL) poses several challenges since it prohibits the rehearsal of data from previous tasks and thus suffers from catastrophic forgetting. Recent approaches to incrementally le... 详细信息
来源: 评论
Fast-moving object counting with an event camera
TechRxiv
收藏 引用
TechRxiv 2022年
作者: Bialik, Kamil Kowalczyk, Marcin Blachut, Krzysztof Kryjak, Tomasz Embedded Vision Systems Group Computer Vision Laboratory Department of Automatic Control and Robotics AGH University of Science and Technology Al. Mickiewicza 30 Krakow30-059 Poland
This paper proposes the use of an event camera as a component of a vision system that enables counting of fast-moving objects – in this case, falling corn grains. These type of cameras transmit information about the ... 详细信息
来源: 评论
PointPillars Backbone Type Selection For Fast and Accurate LiDAR Object Detection
arXiv
收藏 引用
arXiv 2022年
作者: Lis, Konrad Kryjak, Tomasz Embedded Vision Systems Group Computer Vision Laboratory Department of Automatic Control and Robotics AGH University of Science and Technology Al. Mickiewicza 30 Krakow30-059 Poland
3D object detection from LiDAR sensor data is an important topic in the context of autonomous cars and drones. In this paper, we present the results of experiments on the impact of backbone selection of a deep convolu... 详细信息
来源: 评论
Optimized Admittance Control for Manipulators Interacting with Unknown Environment
Optimized Admittance Control for Manipulators Interacting wi...
收藏 引用
IEEE International Conference on Industrial Technology (ICIT)
作者: Haiyi Kong Guangzhu Peng Guang Li Chenguang Yang Department of Electrical and Electronic Engineering University of Manchester Oxford Rd Manchester UK Bristol Robotics Laboratory University of the West of England Bristol UK School of Automation Nanjing University of Information Science and Technology Nanjing China Department of Computer Science University of Liverpool Liverpool UK
This paper considers the study scenario that the end-effector of a manipulator follows a desired trajectory and interacts with external environment. To maximize the interaction performance, admittance control is combi... 详细信息
来源: 评论
GenFace: A Large-Scale Fine-Grained Face Forgery Benchmark and Cross Appearance-Edge Learning
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Yaning Yu, Zitong Wang, Tianyi Huang, Xiaobin Shen, Linlin Gao, Zan Ren, Jianfeng Computer Vision Institute College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China School of Computing and Information Technology Great Bay University Dongguan523000 China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen518060 China Nanyang Technological University 50 Nanyang Ave Block N 4 639798 Singapore Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen518129 China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University China Jinan250014 China Key Laboratory of Computer Vision and System Ministry of Education Tianjin University of Technology Tianjin300384 China School of Computer Science University of Nottingham Ningbo China
The rapid advancement of photorealistic generators has reached a critical juncture where the discrepancy between authentic and manipulated images is increasingly indistinguishable. Thus, benchmarking and advancing tec... 详细信息
来源: 评论
FireXnet: an explainable AI-based tailored deep learning model for wildfire detection on resource-constrained devices
收藏 引用
Fire Ecology 2023年 第1期19卷 1-19页
作者: Ahmad, Khubab Khan, Muhammad Shahbaz Ahmed, Fawad Driss, Maha Boulila, Wadii Alazeb, Abdulwahab Alsulami, Mohammad Alshehri, Mohammed S. Ghadi, Yazeed Yasin Ahmad, Jawad Faculty of Engineering and Technology Multimedia University Melaka Malaysia School of Computing Engineering and the Built Environment Edinburgh Napier University Edinburgh UK Department of Cyber Security Pakistan Navy Engineering College NUST Karachi Pakistan Robotics and Internet of Things Laboratory Prince Sultan University Riyadh Saudi Arabia RIADI Laboratory National School of Computer Sciences University of Manouba Manouba Tunisia Department of Computer Science College of Computer Science and Information Systems Najran University Najran Saudi Arabia Department of Software Engineering Computer Science Al Ain University Abu Dhabi United Arab Emirates
Forests cover nearly one-third of the Earth’s land and are some of our most biodiverse ecosystems. Due to climate change, these essential habitats are endangered by increasing wildfires. Wildfires are not just a risk...
来源: 评论
Static Force-Based Modeling and Parameter Estimation for a Deformable Link Composed of Passive Spherical Joints With Preload Forces
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2021年 第11期8卷 1817-1826页
作者: Gaofeng Li Dezhen Song Lei Sun Shan Xu Hongpeng Wang Jingtai Liu Nankai University Tianjin 300350China Humanoids and Human Centered Mechatronics Research Line Italian Institute of Technology16163 GenovaItaly Department of Computer Science and Engineering Texas A&M UniversityCollege StationTexas 77843 USA Institute of Robotics and Automatic Information System Nankai UniversityTianjin 300350China Tianjin Key Laboratory of Intelligent Robotics Nankai UniversityTianjin 300350China
To balance the contradiction between higher flexibility and heavier load bearing capacity,we present a novel deformable manipulator which is composed of active rigid joints and deformable *** deformable link is compos... 详细信息
来源: 评论
Regress Before Construct: Regress Autoencoder for Point Cloud Self-supervised Learning
arXiv
收藏 引用
arXiv 2023年
作者: Liu, Yang Chen, Chen Wang, Can King, Xulin Liu, Mengyuan College of Computer Science Sichuan University China Center for Research in Computer Vision University of Central Florida United States Laboratory on Multimedia Information Processing The Department of Computer Science Kiel University Hangzhou Linxrobot Company China Hangzhou GOTHEN Technology Co. Ltd China Key Laboratory of Machine Perception Shenzhen Graduate School Peking University China
Masked Autoencoders (MAE) have demonstrated promising performance in self-supervised learning for both 2D and 3D computer vision. Nevertheless, existing MAE-based methods still have certain drawbacks. Firstly, the fun... 详细信息
来源: 评论