咨询与建议

限定检索结果

文献类型

  • 317 篇 期刊文献
  • 314 篇 会议

馆藏范围

  • 631 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 379 篇 工学
    • 261 篇 计算机科学与技术...
    • 223 篇 软件工程
    • 100 篇 控制科学与工程
    • 92 篇 光学工程
    • 84 篇 信息与通信工程
    • 74 篇 生物工程
    • 58 篇 生物医学工程(可授...
    • 43 篇 电气工程
    • 36 篇 电子科学与技术(可...
    • 30 篇 机械工程
    • 21 篇 仪器科学与技术
    • 16 篇 交通运输工程
    • 15 篇 化学工程与技术
    • 14 篇 动力工程及工程热...
    • 12 篇 建筑学
    • 12 篇 土木工程
  • 218 篇 理学
    • 92 篇 数学
    • 80 篇 物理学
    • 78 篇 生物学
    • 36 篇 统计学(可授理学、...
    • 14 篇 化学
    • 12 篇 系统科学
  • 81 篇 管理学
    • 49 篇 管理科学与工程(可...
    • 34 篇 图书情报与档案管...
    • 18 篇 工商管理
  • 45 篇 医学
    • 43 篇 临床医学
    • 34 篇 基础医学(可授医学...
    • 25 篇 药学(可授医学、理...
    • 10 篇 公共卫生与预防医...
  • 12 篇 农学
  • 9 篇 法学
    • 9 篇 社会学
  • 6 篇 经济学
  • 5 篇 教育学

主题

  • 45 篇 computer vision
  • 43 篇 robot vision sys...
  • 38 篇 laboratories
  • 34 篇 robot sensing sy...
  • 29 篇 cameras
  • 29 篇 intelligent robo...
  • 25 篇 mobile robots
  • 25 篇 robots
  • 23 篇 computer science
  • 20 篇 humans
  • 20 篇 robot kinematics
  • 19 篇 robustness
  • 18 篇 manipulators
  • 18 篇 navigation
  • 18 篇 artificial intel...
  • 18 篇 robotics and aut...
  • 16 篇 shape
  • 14 篇 image segmentati...
  • 14 篇 control systems
  • 13 篇 object detection

机构

  • 25 篇 shenzhen institu...
  • 19 篇 artificial intel...
  • 16 篇 national enginee...
  • 14 篇 guangdong key la...
  • 14 篇 university of ch...
  • 14 篇 embedded vision ...
  • 13 篇 institutes for r...
  • 11 篇 computer vision ...
  • 11 篇 shenzhen key lab...
  • 11 篇 heidelberg
  • 10 篇 guangdong provin...
  • 9 篇 university of sc...
  • 9 篇 computer vision ...
  • 9 篇 department of el...
  • 9 篇 general robotics...
  • 8 篇 computer vision ...
  • 8 篇 computer vision ...
  • 8 篇 state key labora...
  • 7 篇 key laboratory o...
  • 7 篇 embedded vision ...

作者

  • 34 篇 shen linlin
  • 24 篇 kryjak tomasz
  • 21 篇 n.p. papanikolop...
  • 13 篇 timofte radu
  • 13 篇 xie weicheng
  • 10 篇 c.e. smith
  • 9 篇 song siyang
  • 9 篇 zhang hong
  • 9 篇 linlin shen
  • 8 篇 menze bjoern
  • 8 篇 luo cheng
  • 8 篇 douglas g. macha...
  • 7 篇 bakas spyridon
  • 7 篇 zhang zhao
  • 7 篇 hong zhang
  • 7 篇 szolc hubert
  • 7 篇 islam md jahidul
  • 6 篇 liu zhe
  • 6 篇 reinke annika
  • 6 篇 lyons damian m.

语言

  • 594 篇 英文
  • 33 篇 其他
  • 4 篇 中文
检索条件"机构=Robotics & Computer Vision Laboratory Computer and Information Science Department"
631 条 记 录,以下是231-240 订阅
排序:
EFaR 2023: Efficient Face Recognition Competition
arXiv
收藏 引用
arXiv 2023年
作者: Kolf, Jan Niklas Boutros, Fadi Elliesen, Jurek Theuerkauf, Markus Damer, Naser Alansari, Mohamad Hay, Oussama Abdul Alansari, Sara Javed, Sajid Werghi, Naoufel Grm, Klemen Štruc, Vitomir Alonso-Fernandez, Fernando Diaz, Kevin Hernandez Bigun, Josef George, Anjith Ecabert, Christophe Shahreza, Hatef Otroshi Kotwal, Ketan Marcel, Sébastien Medvedev, Iurii Jin, Bo Nunes, Diogo Hassanpour, Ahmad Khatiwada, Pankaj Toor, Aafan Ahmad Yang, Bian Fraunhofer Institute for Computer Graphics Research IGD Germany TU Darmstadt Germany Department of Electrical and Computer Engineering Khalifa University Abu Dhabi United Arab Emirates Laboratory for Machine Intelligence Faculty of Electrical Engineering University of Ljubljana Slovenia Halmstad University Sweden Idiap Research Institute Martigny Switzerland Lausanne Switzerland Lausanne Switzerland Institute of Systems and Robotics University of Coimbra Coimbra Portugal eHealth and Welfare Security Group Department of Information Security and Communication Technology Norwegian University of Science and Technology Norway
This paper presents the summary of the Efficient Face Recognition Competition (EFaR) held at the 2023 International Joint Conference on Biometrics (IJCB 2023). The competition received 17 submissions from 6 different ... 详细信息
来源: 评论
Unprecedented Smart Algorithm for Uninterrupted SDN Services During DDoS Attack
收藏 引用
computers, Materials & Continua 2022年 第1期70卷 875-894页
作者: Muhammad Reazul Haque Saw Chin Tan Zulfadzli Yusoff Kashif Nisar Rizaludin Kaspin Iram Haider Sana Nisar J.P.C.Rodrigues Bhawani Shankar Chowdhry Muhammad AslamUqaili Satya Prasad Majumder Danda B.Rawat Richard Etengu Rajkumar Buyya Faculty of Computing&Informatics Multimedia UniversityPersiaranMultimediaCyberjaya63100SelangorMalaysia Faculty of Engineering Multimedia UniversityPersiaran MultimediaCyberjaya63100SelangorMalaysia Faculty of Computing and Informatics University Malaysia SabahJalan UMSKota Kinabalu Sabah88400Malaysia Telekom Malaysia Research&Development TM Innovation Centre63000CyberjayaSelangorMalaysia Federal University of Piauí(UFPI) TeresinaPIBrazil Instituto de Telecomunica珲es 6201-001Covilh?Portugal National Center of Robotics and Automation-Condition Monitoring Systems Lab MUETJamshoroPakistan Department of Electrical and Electronic Engineering BUETDhaka1205Bangladesh Department of Electrical Engineering and Computer Science Data Science and Cybersecurity CenterHoward UniversityWashingtonDCUSA Cloud Computing and Distributed Systems(CLOUDS)Laboratory School of Computing and Information SystemsThe University of MelbourneMelbourneVIC 3053Australia
In the design and planning of next-generation Internet of Things(IoT),telecommunication,and satellite communication systems,controller placement is crucial in software-defined networking(SDN).The programmability of th... 详细信息
来源: 评论
No One Left Behind: Real-World Federated Class-Incremental Learning
arXiv
收藏 引用
arXiv 2023年
作者: Dong, Jiahua Li, Hongliu Cong, Yang Sun, Gan Zhang, Yulun Van Gool, Luc The State Key Laboratory of Robotics Shenyang Institute of Automation Chinese Academy of Sciences Shenyang110016 China The Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences Shenyang110169 China The University of Chinese Academy of Sciences Beijing100049 China The Department of Civil and Environmental Engineering Hong Kong Polytechnic University Hong Kong The College of Automation Science and Engineering South China University of Technology Guangzhou510640 China The Computer Vision Lab ETH Zürich Zürich8092 Switzerland
Federated learning (FL) is a hot collaborative training framework via aggregating model parameters of decentralized local clients. However, most FL methods unreasonably assume data categories of FL framework are known... 详细信息
来源: 评论
PSFHS Challenge Report: Pubic Symphysis and Fetal Head Segmentation from Intrapartum Ultrasound Images
arXiv
收藏 引用
arXiv 2024年
作者: Bai, Jieyun Zhou, Zihao Ou, Zhanhong Koehler, Gregor Stock, Raphael Maier-Hein, Klaus Elbatel, Marawan Martí, Robert Li, Xiaomeng Qiu, Yaoyang Gou, Panjie Chen, Gongping Zhao, Lei Zhang, Jianxun Dai, Yu Wang, Fangyijie Silvestre, Guénolé Curran, Kathleen Sun, Hongkun Xu, Jing Cai, Pengzhou Jiang, Lu Lan, Libin Ni, Dong Zhong, Mei Chen, Gaowen Campello, Víctor M. Lu, Yaosheng Lekadir, Karim Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization Jinan University Guangzhou China Auckland Bioengineering Institute The University of Auckland Auckland New Zealand Heidelberg Germany Department of Electronic and Computer Engineering The Hong Kong University of Science and Technology Hong Kong Computer Vision and Robotics Group University of Girona Girona Spain Co. LTD Beijing China College of Artificial Intelligence Nankai University Tianjin China College of Computer Science and Electronic Engineering Hunan University Changsha China School of Medicine University College Dublin Dublin Ireland School of Computer Science University College Dublin Dublin Ireland School of Statistics & Mathematics Zhejiang Gongshang University Hangzhou China School of Computer Science & Engineering Chongqing University of Technology Chongqing China National-Regional Key Technology Engineering Laboratory for Medical Ultrasound Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging School of Biomedical Engineering Health Science Center Shenzhen University Shenzhen China NanFang Hospital of Southern Medical University Guangzhou China Zhujiang Hospital of Southern Medical University Guangzhou China Departament de Matemàtiques i Informàtica Universitat de Barcelona Barcelona Spain Barcelona Spain Institute The University of Auckland Private Bag 92019 Auckland1142 New Zealand
Segmentation of the fetal and maternal structures, particularly intrapartum ultrasound imaging as advocated by the International Society of Ultrasound in Obstetrics and Gynecology (ISUOG) for monitoring labor progress... 详细信息
来源: 评论
Grand Challenges in the Verification of Autonomous Systems
arXiv
收藏 引用
arXiv 2024年
作者: Leahy, Kevin Asgari, Hamid Dennis, Louise A. Feather, Martin S. Fisher, Michael Ibanez-Guzman, Javier Logan, Brian Olszewska, Joanna I. Redfield, Signe Robotics Engineering Department Worcester Polytechnic Institute WorcesterMA United States Complex and Autonomous Systems Research Group Thales UK Research Reading United Kingdom Jet Propulsion Laboratory California Institute of Technology PasadenaCA United States Department of Computer Science University of Manchester Manchester United Kingdom Renault Guyancourt France Department of Computing Science University of Aberdeen Aberdeen United Kingdom Department of Information and Computing Sciences Utrecht University Utrecht Netherlands School of Computing and Engineering University of the West of Scotland Glasgow United Kingdom U.S. Naval Research Laboratory WashingtonDC United States
Autonomous systems use independent decisionmaking with only limited human intervention to accomplish goals in complex and unpredictable environments. As the autonomy technologies that underpin them continue to advance...
来源: 评论
FDDH: Fast discriminative discrete hashing for large-scale cross-modal retrieval
arXiv
收藏 引用
arXiv 2021年
作者: Liu, Xin Wang, Xingzhi Cheung, Yiu-Ming Department of Computer Science Huaqiao University Xiamen Key Laboratory of Computer Vision and Pattern Recognition Fujian Key Laboratory of Big Data Intelligence and Security Xiamen361021 China School of Electronics and Information Technology Sun Yat-sen University Guangzhou510006 China Department of Computer Science Hong Kong Baptist University Hong Kong Hong Kong
Cross-modal hashing, favored for its effectiveness and efficiency, has received wide attention to facilitating efficient retrieval across different modalities. Nevertheless, most existing methods do not sufficiently e... 详细信息
来源: 评论
DPER: Diffusion Prior Driven Neural Representation for Limited Angle and Sparse View CT Reconstruction
arXiv
收藏 引用
arXiv 2024年
作者: Du, Chenhe Lin, Xiyue Wu, Qing Tian, Xuanyu Su, Ying Luo, Zhe Zheng, Rui Chen, Yang Wei, Hongjiang Zhou, S. Kevin Yu, Jingyi Zhang, Yuyao The School of Information Science and Technology ShanghaiTech University Shanghai China The Department of Critical Care Medicine Zhongshan Hospital Fudan University Shanghai China The Laboratory of Image Science and Technology The School of Computer Science and Engineering The Key Laboratory of New Generation Artificial Intelligence Technology and Its Interdisciplinary Applications Southeast University Ministry of Education Nanjing210096 China The School of Biomedical Engineering Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China School of Biomedical Engineering Suzhou Institute for Advanced Research University of Science and Technology of China Suzhou215123 China Institute of Computing Technology CAS Beijing100190 China
Limited-angle and sparse-view computed tomography (LACT and SVCT) are crucial for expanding the scope of X-ray CT applications. However, they face challenges due to incomplete data acquisition, resulting in diverse ar... 详细信息
来源: 评论
Optimisation of a siamese neural network for real-time energy efficient object tracking
TechRxiv
收藏 引用
TechRxiv 2020年
作者: Przewlocka, Dominika Wasala, Mateusz Szolc, Hubert Blachut, Krzysztof Kryjak, Tomasz Embedded Vision Systems Group Computer Vision Laboratory Department of Automatic Control and Robotics AGH University of Science and Technology Krakow Poland
In this paper the research on optimisation of visual object tracking using a Siamese neural network for embedded vision systems is presented. It was assumed that the solution shall operate in real-time, preferably for... 详细信息
来源: 评论
Optimisation of a siamese neural network for real-time energy efficient object tracking
arXiv
收藏 引用
arXiv 2020年
作者: Przewlocka, Dominika Wasala, Mateusz Szolc, Hubert Blachut, Krzysztof Kryjak, Tomasz Embedded Vision Systems Group Computer Vision Laboratory Department of Automatic Control and Robotics AGH University of Science and Technology Krakow Poland
In this paper the research on optimisation of visual object tracking using a Siamese neural network for embedded vision systems is presented. It was assumed that the solution shall operate in real-time, preferably for... 详细信息
来源: 评论
Physical Adversarial Attack Meets computer vision: A Decade Survey
arXiv
收藏 引用
arXiv 2022年
作者: Wei, Hui Tang, Hao Jia, Xuemei Wang, Zhixiang Yu, Hanxun Li, Zhubo Satoh, Shin'ichi Van Gool, Luc Wang, Zheng School of Computer Science National Engineering Research Center for Multimedia Software Wuhan University Wuhan China National Key Laboratory for Multimedia Information Processing School of Computer Science Peking University Beijing100871 China Colleage of Software and Technology Zhejiang University Hangzhou China School of Cyber Science and Engineering Wuhan University Wuhan China Digital Content and Media Sciences Research Division National Institute of Informatics Japan Department of Information and Communication Engineering Graduate School of Information Science and Technology The University of Tokyo Japan Computer Vision Lab of ETH Zurich Zürich8092 Switzerland KU Leuven Leuven3000 Belgium INSAIT Sofia Bulgaria
Despite the impressive achievements of Deep Neural Networks (DNNs) in computer vision, their vulnerability to adversarial attacks remains a critical concern. Extensive research has demonstrated that incorporating soph... 详细信息
来源: 评论