咨询与建议

限定检索结果

文献类型

  • 317 篇 期刊文献
  • 314 篇 会议

馆藏范围

  • 631 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 379 篇 工学
    • 261 篇 计算机科学与技术...
    • 223 篇 软件工程
    • 100 篇 控制科学与工程
    • 92 篇 光学工程
    • 84 篇 信息与通信工程
    • 74 篇 生物工程
    • 58 篇 生物医学工程(可授...
    • 43 篇 电气工程
    • 36 篇 电子科学与技术(可...
    • 30 篇 机械工程
    • 21 篇 仪器科学与技术
    • 16 篇 交通运输工程
    • 15 篇 化学工程与技术
    • 14 篇 动力工程及工程热...
    • 12 篇 建筑学
    • 12 篇 土木工程
  • 218 篇 理学
    • 92 篇 数学
    • 80 篇 物理学
    • 78 篇 生物学
    • 36 篇 统计学(可授理学、...
    • 14 篇 化学
    • 12 篇 系统科学
  • 81 篇 管理学
    • 49 篇 管理科学与工程(可...
    • 34 篇 图书情报与档案管...
    • 18 篇 工商管理
  • 45 篇 医学
    • 43 篇 临床医学
    • 34 篇 基础医学(可授医学...
    • 25 篇 药学(可授医学、理...
    • 10 篇 公共卫生与预防医...
  • 12 篇 农学
  • 9 篇 法学
    • 9 篇 社会学
  • 6 篇 经济学
  • 5 篇 教育学

主题

  • 45 篇 computer vision
  • 43 篇 robot vision sys...
  • 38 篇 laboratories
  • 34 篇 robot sensing sy...
  • 29 篇 cameras
  • 29 篇 intelligent robo...
  • 25 篇 mobile robots
  • 25 篇 robots
  • 23 篇 computer science
  • 20 篇 humans
  • 20 篇 robot kinematics
  • 19 篇 robustness
  • 18 篇 manipulators
  • 18 篇 navigation
  • 18 篇 artificial intel...
  • 18 篇 robotics and aut...
  • 16 篇 shape
  • 14 篇 image segmentati...
  • 14 篇 control systems
  • 13 篇 object detection

机构

  • 25 篇 shenzhen institu...
  • 19 篇 artificial intel...
  • 16 篇 national enginee...
  • 14 篇 guangdong key la...
  • 14 篇 university of ch...
  • 14 篇 embedded vision ...
  • 13 篇 institutes for r...
  • 11 篇 computer vision ...
  • 11 篇 shenzhen key lab...
  • 11 篇 heidelberg
  • 10 篇 guangdong provin...
  • 9 篇 university of sc...
  • 9 篇 computer vision ...
  • 9 篇 department of el...
  • 9 篇 general robotics...
  • 8 篇 computer vision ...
  • 8 篇 computer vision ...
  • 8 篇 state key labora...
  • 7 篇 key laboratory o...
  • 7 篇 embedded vision ...

作者

  • 34 篇 shen linlin
  • 24 篇 kryjak tomasz
  • 21 篇 n.p. papanikolop...
  • 13 篇 timofte radu
  • 13 篇 xie weicheng
  • 10 篇 c.e. smith
  • 9 篇 song siyang
  • 9 篇 zhang hong
  • 9 篇 linlin shen
  • 8 篇 menze bjoern
  • 8 篇 luo cheng
  • 8 篇 douglas g. macha...
  • 7 篇 bakas spyridon
  • 7 篇 zhang zhao
  • 7 篇 hong zhang
  • 7 篇 szolc hubert
  • 7 篇 islam md jahidul
  • 6 篇 liu zhe
  • 6 篇 reinke annika
  • 6 篇 lyons damian m.

语言

  • 594 篇 英文
  • 33 篇 其他
  • 4 篇 中文
检索条件"机构=Robotics & Computer Vision Laboratory Computer and Information Science Department"
631 条 记 录,以下是261-270 订阅
排序:
Robust and Precise Facial Landmark Detection by Self-Calibrated Pose Attention Network
arXiv
收藏 引用
arXiv 2021年
作者: Wan, Jun Xi, Hui Zhou, Jie Lai, Zhihui Pedrycz, Witold Wang, Xu Sun, Hang School of Information and Safety Engineering Zhongnan University of Economics and Law Wuhan430073 China College of Computer Science and Software Engineering Shen zhen University Shenzhen518060 China Computer Vision Institute College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China Department of Electrical & Computer Engineering University of Alberta Edmonton Canada Systems Research Institute Polish Academy of Sciences Warsaw Poland College of Computer and Information Technology China Three Gorges University Yichang HuBei China
Current fully-supervised facial landmark detection methods have progressed rapidly and achieved remarkable performance. However, they still suffer when coping with faces under large poses and heavy occlusions for inac... 详细信息
来源: 评论
Enhance to read better: A multi-task adversarial network for handwritten document image enhancement
arXiv
收藏 引用
arXiv 2021年
作者: Jemni, Sana Khamekhem Souibgui, Mohamed Ali Kessentini, Yousri Fornés, Alicia MIR@CL: Multimedia InfoRmation systems and Advanced Computing Laboratory Computer Vision Center Computer Science Department Universitat Autònoma de Barcelona Spain Digital Research Center of Sfax B.P. 275 Sakiet Ezzit Sfax3021 Tunisia SM@RTS : Laboratory of Signals SysteMs ARtificial Intelligence and neTworkS
Handwritten document images can be highly affected by degradation for different reasons: Paper ageing, daily-life scenarios (wrinkles, dust, etc.), bad scanning process and so on. These artifacts raise many readabilit... 详细信息
来源: 评论
Efficient MedSAMs: Segment Anything in Medical Images on Laptop
arXiv
收藏 引用
arXiv 2024年
作者: Ma, Jun Li, Feifei Kim, Sumin Asakereh, Reza Le, Bao-Hiep Nguyen-Vu, Dang-Khoa Pfefferle, Alexander Wei, Muxin Gao, Ruochen Lyu, Donghang Yang, Songxiao Purucker, Lennart Marinov, Zdravko Staring, Marius Lu, Haisheng Dao, Thuy Thanh Ye, Xincheng Li, Zhi Brugnara, Gianluca Vollmuth, Philipp Foltyn-Dumitru, Martha Cho, Jaeyoung Mahmutoglu, Mustafa Ahmed Bendszus, Martin Pflüger, Irada Rastogi, Aditya Ni, Dong Yang, Xin Zhou, Guang-Quan Wang, Kaini Heller, Nicholas Papanikolopoulos, Nikolaos Weight, Christopher Tong, Yubing Udupa, Jayaram K. Patrick, Cahill J. Wang, Yaqi Zhang, Yifan Contijoch, Francisco McVeigh, Elliot Ye, Xin He, Shucheng Haase, Robert Pinetz, Thomas Radbruch, Alexander Krause, Inga Kobler, Erich He, Jian Tang, Yucheng Yang, Haichun Huo, Yuankai Luo, Gongning Kushibar, Kaisar Amankulov, Jandos Toleshbayev, Dias Mukhamejan, Amangeldi Egger, Jan Pepe, Antonio Gsaxner, Christina Luijten, Gijs Fujita, Shohei Kikuchi, Tomohiro Wiestler, Benedikt Kirschke, Jan S. de la Rosa, Ezequiel Bolelli, Federico Lumetti, Luca Grana, Costantino Xie, Kunpeng Wu, Guomin Puladi, Behrus Martín-Isla, Carlos Lekadir, Karim Campello, Victor M. Shao, Wei Brisbane, Wayne Jiang, Hongxu Wei, Hao Yuan, Wu Li, Shuangle Zhou, Yuyin Wang, Bo AI Collaborative Centre University Health Network Department of Laboratory Medicine and Pathobiology University of Toronto Vector Institute Toronto Canada Peter Munk Cardiac Centre University Health Network Toronto Canada Toronto General Hospital Research Institute University Health Network Department of Computer Science University of Toronto University Health Network Vector Institute Toronto Canada University of Science Vietnam National University Ho Chi Minh City Viet Nam Institute of Computer Science University of Freiburg Freiburg Germany School of Medicine and Health Harbin Institute of Technology Harbin China Division of Image Processing Department of Radiology Leiden University Medical Center Leiden Netherlands Department of System and Control Engineering School of Engineering Institute of Science Tokyo Formerly Tokyo Institute of Technology Tokyo Japan Institute for Anthropomatics and Robotics Karlsruhe Institute of Technology Karlsruhe Germany School of Information and Communication Engineering University of Electronic Science and Technology of China Chengdu China School of Electrical Engineering and Computer Science University of Queensland Brisbane Australia School of Cyberspace Hangzhou Dianzi University Hangzhou China Division for Computational Radiology and Clinical AI The Department of Neuroradiology University Hospital Bonn Germany Division for Computational Radiology and Clinical AI The Department of Neuroradiology University Hospital Bonn Germany Department of Neuroradiology Heidelberg University Hospital Heidelberg Germany Division for Computational Radiology and Clinical AI Department of Neuroradiology University Hospital Bonn Germany School of Biomedical Engineering Shenzhen University Shenzhen China School of Biological Science and Medical Engineering Southeast University Nanjing China Department of Urology Cleveland Clinic Cleveland United States Department of Computer Science University of Minnesota Minneapolis United St
Promptable segmentation foundation models have emerged as a transformative approach to addressing the diverse needs in medical images, but most existing models require expensive computing, posing a big barrier to thei... 详细信息
来源: 评论
Evaluation of Robustness Metrics for Defense of Machine Learning Systems
Evaluation of Robustness Metrics for Defense of Machine Lear...
收藏 引用
International Conference on Military Communications and information Systems (ICMCIS)
作者: J. DeMarchi R. Rijken J. Melrose B. Madahar G. Fumera F. Roli E. Ledda M. Aktaş F. Kurth P. Baggenstoss B. Pelzer L. Kanestad Collaborative Engineering Systems & Aerospace Systems Information Supremacy Royal Netherlands Aerospace Centre NLR Amsterdam NLD Cyber & Information Systems Division Defence Science and Technology Laboratory Portondown GBR Department of Electrical and Electronic Engineering University of Cagliari Cagliari ITA Department of Informatics Bioengineering Robotics and Systems Engineering University of Genoa Genoa ITA Department of Computer Control and Management Engineering Sapienza University of Rome Rome ITA Defence Systems Technologies Division ASELSAN Ankara TUR Fraunhofer Institute for Communication Information Processing and Ergonomics Bonn DEU Swedish Defence Research Agency Cyber Defence and C2 Technology Division Stockholm SWE
In this paper we explore some of the potential applications of robustness criteria for machine learning (ML) systems by way of tangible “demonstrator” scenarios. In each demonstrator, ML robustness metrics are appli...
来源: 评论
Distributed Energy Optimization for Mobile Networks Using Potential Games
Distributed Energy Optimization for Mobile Networks Using Po...
收藏 引用
IEEE Internatonal Conference on Mobile Adhoc and Sensor Systems (MASS)
作者: Zhizongkai Wang Hanfei Wang Zhongji Wang Yilin Xiao Yunzhi Zhao Xiaowen Li Xufeng Chen Lin Gao Fen Hou Jianwei Huang School of Electronics and Information Engineering and the Guangdong Provincial Key Laboratory of Aerospace Communication and Networking Technology Harbin Institute of Technology Shenzhen Guangdong P.R. China School of Science and Engineering Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen Key Laboratory of Crowd Intelligence Empowered Low-Carbon Energy Network and CSIJRI Joint Research Centre on Smart Energy Storage The Chinese University of Hong Kong Shenzhen Guangdong P.R. China Department of Electrical and Computer Engineering State Key Laboratory of IoT for Smart City University of Macau Macau SAR P.R. China Huawei Technologies P.R. China
The rapid advancement of information and communication technology (ICT) has made the industry a significant contributor to global carbon emissions. As the foundation of ICT, next-generation mobile communication networ... 详细信息
来源: 评论
Motion planner augmented reinforcement learning for robot manipulation in obstructed environments
arXiv
收藏 引用
arXiv 2020年
作者: Yamada, Jun Lee, Youngwoon Salhotra, Gautam Pertsch, Karl Pflueger, Max Sukhatme, Gaurav S. Lim, Joseph J. Englert, Peter Cognitive Learning for Vision and Robotics Lab United States Robotic Embedded Systems Laboratory Department of Computer Science University of Southern California United States
Deep reinforcement learning (RL) agents are able to learn contact-rich manipulation tasks by maximizing a reward signal, but require large amounts of experience, especially in environments with many obstacles that com... 详细信息
来源: 评论
MIPI 2022 Challenge on Under-Display Camera Image Restoration: Methods and Results  17th
MIPI 2022 Challenge on Under-Display Camera Image Restorati...
收藏 引用
17th European Conference on computer vision, ECCV 2022
作者: Feng, Ruicheng Li, Chongyi Zhou, Shangchen Sun, Wenxiu Zhu, Qingpeng Jiang, Jun Yang, Qingyu Loy, Chen Change Gu, Jinwei Zhu, Yurui Wang, Xi Fu, Xueyang Hu, Xiaowei Hu, Jinfan Liu, Xina Chen, Xiangyu Dong, Chao Zhang, Dafeng Huang, Feiyu Liu, Shizhuo Wang, Xiaobing Jin, Zhezhu Jiang, Xuhao Shao, Guangqi Wang, Xiaotao Lei, Lei Zhang, Zhao Zhao, Suiyi Zheng, Huan Gao, Yangcheng Wei, Yanyan Ren, Jiahuan Huang, Tao Fang, Zhenxuan Huang, Mengluan Xu, Junwei Zhang, Yong Yang, Yuechi Shu, Qidi Yang, Zhiwen Li, Shaocong Yao, Mingde Xu, Ruikang Guan, Yuanshen Huang, Jie Xiong, Zhiwei Zhu, Hangyan Liu, Ming Liu, Shaohui Zuo, Wangmeng Jia, Zhuang Song, Binbin Song, Ziqi Mao, Guiting Hou, Ben Liu, Zhimou Ke, Yi Ouyang, Dengpei Han, Dekui Zhang, Jinghao Zhu, Qi Zheng, Naishan Zhao, Feng Jin, Wu Conde, Marcos Nathan, Sabari Timofte, Radu Xu, Tianyi Xu, Jun Hrishikesh, P.S. Puthussery, Densen Jiji, C.V. Jiang, Biao Ding, Yuhan Li, WanZhang Feng, Xiaoyue Chen, Sijing Zhong, Tianheng Lu, Jiyang Chen, Hongming Fan, Zhentao Chen, Xiang Nanyang Technological University Singapore Singapore SenseBrain San Jose United States Shanghai AI Laboratory Shanghai China SenseTime Research and Tetras.AI Beijing China University of Science and Technology of China Hefei China Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China Samsung Research China Beijing China Xiaomi Beijing China Hefei University of Technology Hefei China School of Artificial Intelligence Xidian University Xi’an China School of Remote Sensing and Information Engineering Wuhan University Wuhan China State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing Wuhan University Wuhan China Harbin Institute of Technology Harbin China University of Macau China Changsha Research Institute of Mining and Metallurgy Changsha China Tianjin University Tianjin China Computer Vision Lab University of Wurzburg Würzburg Germany Couger Inc. Tokyo Japan School of Statistics and Data Science Nankai University Tianjin China Founding Minds Software Thiruvananthapuram India Department of Electronics and Communication SRM University AP Amaravati India Fudan University Shanghai China Shenyang Aerospace University Shenyang China Nanjing University of Science and Technology Nanjing China
Developing and integrating advanced image sensors with novel algorithms in camera systems is prevalent with the increasing demand for computational photography and imaging on mobile platforms. However, the lack of hig... 详细信息
来源: 评论
Socially Pertinent Robots in Gerontological Healthcare
arXiv
收藏 引用
arXiv 2024年
作者: Alameda-Pineda, Xavier Addlesee, Angus García, Daniel Hernández Reinke, Chris Arias, Soraya Arrigoni, Federica Auternaud, Alex Blavette, Lauriane Beyan, Cigdem Camara, Luis Gomez Cohen, Ohad Conti, Alessandro Dacunha, Sébastien Dondrup, Christian Ellinson, Yoav Ferro, Francesco Gannot, Sharon Gras, Florian Gunson, Nancie Horaud, Radu D’Incà, Moreno Kimouche, Imad Lemaignan, Séverin Lemon, Oliver Liotard, Cyril Marchionni, Luca Moradi, Mordehay Pajdla, Tomas Pino, Maribel Polic, Michal Py, Matthieu Rado, Ariel Ren, Bin Ricci, Elisa Rigaud, Anne-Sophie Rota, Paolo Romeo, Marta Sebe, Nicu Sieińska, Weronika Tandeitnik, Pinchas Tonini, Francesco Turro, Nicolas Wintz, Timothée Yu, Yanchao RobotLearn Team Inria at Univ. Grenoble Alpes CNRS LJK 655 Avenue de l’Europe Montbonnot38334 France Czech Institute of Informatics Robotics and Cybernetics Czech Technical University in Prague Jugoslávských partyzánů 1580/3 Dejvice 160 00 Czech Republic Acoustic Signal Processing Laboratory Bar-Ilan University Ramat-Gan5290002 Israel Department of Information and Computer Science University of Trento Via Sommarive 9 Trento38123 Italy Interaction Lab Mathematical and Computer Sciences Heriot-Watt University EdinburghEH14 4AS United Kingdom ERM Automatismes 561 allée Bellecour Carpentras84200 France PAL Robotics C/ Pujades 77-79 Barcelona08005 Spain Lusage Living Lab Assistance Publique - Hopitaux de Paris 54-56 Rue Pascal Paris75013 France
Despite the many recent achievements in developing and deploying social robotics, there are still many underexplored environments and applications for which systematic evaluation of such systems by end-users is necess... 详细信息
来源: 评论
A toolkit to generate social navigation datasets
arXiv
收藏 引用
arXiv 2020年
作者: Baghel, Rishabh Kapoor, Aditya Bachiller, Pilar Jorvekar, Ronit R. Rodriguez-Criado, Daniel Manso, Luis J. Dept. of Computer Science and Engineering Indian Institute of Information Technology Guwahati India Dept. of Computer Science and Information Systems Birla Institute of Technology and Science Goa India Robotics and Artificial Vision Laboratory University of Extremadura Spain Dept. of Computer Engineering Pune Institute of Computer Technology India Dept. of Computer Science College of Engineering and Physical Sciences Aston University United Kingdom
Social navigation datasets are necessary to assess social navigation algorithms and train machine learning algorithms. Most of the currently available datasets target pedestrians’ movements as a pattern to be replica... 详细信息
来源: 评论
Robust Self-Expression Learning with Adaptive Noise Perception
SSRN
收藏 引用
SSRN 2023年
作者: Wang, Yangbo Zhou, Jie Lu, Jianglin Wan, Jun Gao, Can Lin, Qingshui College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen518060 China SZU Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen518060 China SMILE Lab Department of ECE College of Engineering Northeastern University Boston02115 United States School of Information and Safety Engineering Zhongnan University of Economics and Law Wuhan430073 China Basic Teaching Department Liaoning Technical University Huludao125105 China
Self-expression learning methods often obtain a coefficient matrix to measure the similarity between pairs of samples. However, directly using the raw data to represent each sample under the self-expression framework ... 详细信息
来源: 评论