咨询与建议

限定检索结果

文献类型

  • 321 篇 期刊文献
  • 319 篇 会议

馆藏范围

  • 640 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 390 篇 工学
    • 269 篇 计算机科学与技术...
    • 226 篇 软件工程
    • 105 篇 控制科学与工程
    • 93 篇 光学工程
    • 84 篇 信息与通信工程
    • 75 篇 生物工程
    • 59 篇 生物医学工程(可授...
    • 45 篇 电气工程
    • 37 篇 电子科学与技术(可...
    • 31 篇 机械工程
    • 21 篇 仪器科学与技术
    • 16 篇 交通运输工程
    • 15 篇 化学工程与技术
    • 14 篇 动力工程及工程热...
    • 14 篇 建筑学
    • 14 篇 土木工程
  • 219 篇 理学
    • 92 篇 数学
    • 80 篇 物理学
    • 79 篇 生物学
    • 36 篇 统计学(可授理学、...
    • 14 篇 化学
    • 12 篇 系统科学
  • 82 篇 管理学
    • 50 篇 管理科学与工程(可...
    • 34 篇 图书情报与档案管...
    • 19 篇 工商管理
  • 47 篇 医学
    • 44 篇 临床医学
    • 35 篇 基础医学(可授医学...
    • 25 篇 药学(可授医学、理...
    • 11 篇 公共卫生与预防医...
  • 12 篇 农学
  • 9 篇 法学
    • 9 篇 社会学
  • 6 篇 经济学
  • 5 篇 教育学

主题

  • 46 篇 computer vision
  • 43 篇 robot vision sys...
  • 38 篇 laboratories
  • 34 篇 robot sensing sy...
  • 29 篇 cameras
  • 29 篇 intelligent robo...
  • 25 篇 mobile robots
  • 25 篇 robots
  • 23 篇 computer science
  • 20 篇 humans
  • 20 篇 robot kinematics
  • 19 篇 robustness
  • 18 篇 manipulators
  • 18 篇 navigation
  • 18 篇 artificial intel...
  • 18 篇 robotics and aut...
  • 17 篇 shape
  • 14 篇 image segmentati...
  • 14 篇 control systems
  • 13 篇 object detection

机构

  • 26 篇 shenzhen institu...
  • 19 篇 artificial intel...
  • 17 篇 national enginee...
  • 14 篇 guangdong key la...
  • 14 篇 university of ch...
  • 14 篇 embedded vision ...
  • 13 篇 institutes for r...
  • 11 篇 computer vision ...
  • 11 篇 computer vision ...
  • 11 篇 shenzhen key lab...
  • 11 篇 guangdong provin...
  • 11 篇 heidelberg
  • 9 篇 university of sc...
  • 9 篇 department of el...
  • 9 篇 general robotics...
  • 8 篇 computer vision ...
  • 8 篇 computer vision ...
  • 8 篇 state key labora...
  • 7 篇 key laboratory o...
  • 7 篇 embedded vision ...

作者

  • 35 篇 shen linlin
  • 24 篇 kryjak tomasz
  • 21 篇 n.p. papanikolop...
  • 13 篇 timofte radu
  • 13 篇 xie weicheng
  • 10 篇 c.e. smith
  • 9 篇 song siyang
  • 9 篇 zhang hong
  • 9 篇 linlin shen
  • 8 篇 menze bjoern
  • 8 篇 luo cheng
  • 8 篇 douglas g. macha...
  • 7 篇 bakas spyridon
  • 7 篇 zhang zhao
  • 7 篇 hong zhang
  • 7 篇 szolc hubert
  • 7 篇 islam md jahidul
  • 6 篇 liu zhe
  • 6 篇 reinke annika
  • 6 篇 lyons damian m.

语言

  • 582 篇 英文
  • 54 篇 其他
  • 4 篇 中文
检索条件"机构=Robotics & Computer Vision Laboratory Computer and Information Science Department"
640 条 记 录,以下是381-390 订阅
排序:
Real-time subpixel fast bilateral stereo
Real-time subpixel fast bilateral stereo
收藏 引用
2018 IEEE International Conference on information and Automation, ICIA 2018
作者: Fan, Rui Liu, Yanan Bocus, Mohammud Junaid Wang, Lujia Liu, Ming Robotics and Multi-Perception Laborotary Department of Electronic and Computer Engineering Hong Kong University of Science and Technology Hong Kong Hong Kong Visual Information Institute University of Bristol BristolBS8 1UB United Kingdom Bristol Robotics Laboratory University of Bristol BristolBS16 1QY United Kingdom Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
Stereo vision technique has been widely used in robotic systems to acquire 3-D information. In recent years, many researchers have applied bilateral filtering in stereo vision to adaptively aggregate the matching cost... 详细信息
来源: 评论
Human motion correction and representation method from motion camera
收藏 引用
Journal of Engineering 2017年 第1期1卷 370-375页
作者: Zhang, Hong-Bo Guo, Feng Zhang, Miaohui Lin, Ying Hsiao, Tsung-Chih Department of Computer Science and Technology Huaqiao University Xiamen China Xiamen Key Laboratory of Computer Vision and Pattern Recognition Huaqiao University Xiamen China School of Information Science and Engineering Xiamen University Xiamen China Institute of Energy Jiangxi Academy of Sciences Jiangxi Province China
Motion estimation is a basic issue for many computer vision tasks, such as human-computer interaction, motion objection detection and intelligent robot. In many practical scenes, the object movement goes with camera m... 详细信息
来源: 评论
Author Correction: BigNeuron: a resource to benchmark and predict performance of algorithms for automated tracing of neurons in light microscopy datasets
收藏 引用
Nature methods 2024年 第10期21卷 1959页
作者: Linus Manubens-Gil Zhi Zhou Hanbo Chen Arvind Ramanathan Xiaoxiao Liu Yufeng Liu Alessandro Bria Todd Gillette Zongcai Ruan Jian Yang Miroslav Radojević Ting Zhao Li Cheng Lei Qu Siqi Liu Kristofer E Bouchard Lin Gu Weidong Cai Shuiwang Ji Badrinath Roysam Ching-Wei Wang Hongchuan Yu Amos Sironi Daniel Maxim Iascone Jie Zhou Erhan Bas Eduardo Conde-Sousa Paulo Aguiar Xiang Li Yujie Li Sumit Nanda Yuan Wang Leila Muresan Pascal Fua Bing Ye Hai-Yan He Jochen F Staiger Manuel Peter Daniel N Cox Michel Simonneau Marcel Oberlaender Gregory Jefferis Kei Ito Paloma Gonzalez-Bellido Jinhyun Kim Edwin Rubel Hollis T Cline Hongkui Zeng Aljoscha Nern Ann-Shyn Chiang Jianhua Yao Jane Roskams Rick Livesey Janine Stevens Tianming Liu Chinh Dang Yike Guo Ning Zhong Georgia Tourassi Sean Hill Michael Hawrylycz Christof Koch Erik Meijering Giorgio A Ascoli Hanchuan Peng Institute for Brain and Intelligence Southeast University Nanjing China. Microsoft Corporation Redmond WA USA. Tencent AI Lab Bellevue WA USA. Computing Environment and Life Sciences Directorate Argonne National Laboratory Lemont IL USA. Kaya Medical Seattle WA USA. University of Cassino and Southern Lazio Cassino Italy. Center for Neural Informatics Structures and Plasticity Krasnow Institute for Advanced Study George Mason University Fairfax VA USA. Faculty of Information Technology Beijing University of Technology Beijing China. Beijing International Collaboration Base on Brain Informatics and Wisdom Services Beijing China. Nuctech Netherlands Rotterdam the Netherlands. Janelia Research Campus Howard Hughes Medical Institute Ashburn VA USA. Department of Electrical and Computer Engineering University of Alberta Edmonton Alberta Canada. Ministry of Education Key Laboratory of Intelligent Computation and Signal Processing Anhui University Hefei China. Paige AI New York NY USA. Scientific Data Division and Biological Systems and Engineering Division Lawrence Berkeley National Lab Berkeley CA USA. Helen Wills Neuroscience Institute and Redwood Center for Theoretical Neuroscience UC Berkeley Berkeley CA USA. RIKEN AIP Tokyo Japan. Research Center for Advanced Science and Technology (RCAST) The University of Tokyo Tokyo Japan. School of Computer Science University of Sydney Sydney New South Wales Australia. Texas A&M University College Station TX USA. Cullen College of Engineering University of Houston Houston TX USA. Graduate Institute of Biomedical Engineering National Taiwan University of Science and Technology Taipei Taiwan. National Centre for Computer Animation Bournemouth University Poole UK. PROPHESEE Paris France. Department of Neuroscience Columbia University New York NY USA. Mortimer B. Zuckerman Mind Brain Behavior Institute Columbia University New York NY USA. Department of Computer Science Northern Illinois Universit
来源: 评论
An end-to-end deep learning histochemical scoring system for breast cancer tissue microarray
arXiv
收藏 引用
arXiv 2018年
作者: Liu, Jingxin Xu, Bolei Zheng, Chi Gong, Yuanhao Garibaldi, Jon Soria, Daniele Green, Andew Ellis, Ian O. Zou, Wenbin Qiu, Guoping College of Information Engineering Shenzhen University China School of Computer Science University of Nottingham United Kingdom Ningbo Yongxin Optics Co. LTD Zhejiang China Computer Vision Laboratory ETH Zurich Switzerland Department of Computer Science University of Westerminster United Kingdom Faculty of Medicine & Health Sciences University of Nottingham United Kingdom
One of the methods for stratifying different molecular classes of breast cancer is the Nottingham Prognostic Index Plus (NPI+) which uses breast cancer relevant biomarkers to stain tumour tissues prepared on tissue mi... 详细信息
来源: 评论
Aggregation Signature for Small Object Tracking
arXiv
收藏 引用
arXiv 2019年
作者: Liu, Chunlei Ding, Wenrui Yang, Jinyu Murino, Vittorio Zhang, Baochang Han, Jungong Guo, Guodong School of Electrical and Information Engineering Beihang University Beijing China Unmanned System Research Institute Beihang University Beijing China School of Computer Science University of Birmingham British United Kingdom University of Verona Verona Italy Pattern Analysis and Computer Vision department Istituto Italiano di Tecnologia Genoa Italy School of Automation Science and Electrical Engineering Beihang University Beijing China Shenzhen Academy of Aerospace Technology Shenzhen China WMG Data Science Group University of Warwick CoventryCV4 7AL United Kingdom Institute of Deep Learning Baidu Research and National Engineering Laboratory for Deep Learning Technology and Application
—Small object tracking becomes an increasingly important task, which however has been largely unexplored in computer vision. The great challenges stem from the facts that: 1) small objects show extreme vague and vari... 详细信息
来源: 评论
Triangle extension: Efficient localizability detection in wireless sensor networks
arXiv
收藏 引用
arXiv 2018年
作者: Wu, Hejun Ding, Ao Liu, Weiwei Li, Lvzhou Yang, Zheng Guangdong Key Laboratory of Big Data Analysis and Processing Department of Computer Science Sun Yat-sen University Guangzhou China Horizon Robotics Beijing China School of Software Tsinghua National Laboratory for Information Science and Technology Tsinghua University Beijing China
Determining whether nodes can be localized, called localizability detection, is essential for wireless sensor networks (WSNs). This step is required for localizing nodes, achieving low-cost deployments, and identifyin... 详细信息
来源: 评论
A Novel LOS Rate Estimation Method Based on Images for Strap-down Inertial Guidance
收藏 引用
Journal of Physics: Conference Series 2020年 第1期1570卷
作者: Zheng Xu Haibo Luo Bin Hui Zheng Chang Shenyang Institute of Automation Chinese Academy of Sciences Shenyang 110016 China Tel.: +86-024-2397-0757 Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences Shenyang 110016 China University of Chinese Academy of Sciences Beijing 100049 China Key Laboratory of Opto-Electronic Information Processing Chinese Academy of Science Shenyang 110016 China The Key Lab of Image Understanding and Computer Vision Shenyang 110016 China
With the development of technology, precision guided weapon is becoming more and more important in modern war. In order to launch our recent guidance system on medium and small guided weapons, we propose a method to o...
来源: 评论
Injecting and removing malignant features in mammography with CycleGAN: Investigation of an automated adversarial attack using neural networks
arXiv
收藏 引用
arXiv 2018年
作者: Becker, Anton S. Jendele, Lukas Skopek, Ondrej Berger, Nicole Ghafoor, Soleen Marcon, Magda Konukoglu, Ender Institute of Diagnostic and Interventional Radiology University Hospital of Zurich Department of Health Sciences and Technology ETH Zurich Department of Computer Science ETH Zurich Department of Radiology Memorial Sloan Kettering Cancer Center New York City United States Computer Vision Laboratory Department of Information Technology and Electrical Engineering ETH Zurich
Purpose To train a cycle-consistent generative adversarial network (CycleGAN) on mammographic data to inject or remove features of malignancy, and to determine whether these AI-mediated attacks can be detected by radi... 详细信息
来源: 评论
Deep micro-dictionary learning and coding network
arXiv
收藏 引用
arXiv 2018年
作者: Tang, Hao Wei, Heng Xiao, Wei Wang, Wei Xu, Dan Yan, Yan Sebe, Nicu Department of Information Engineering and Computer Science University of Trento Trento Italy Department of Electrical Engineering Hong Kong Polytechnic University Hong Kong Lingxi Artificial Intelligence Co. Ltd Shen Zhen China Computer Vision Laboratory École Polytechnique Fédérale de Lausanne Lausanne Switzerland Department of Engineering Science University of Oxford Oxford United Kingdom Department of Computer Science Texas State University San Marcos United States
In this paper, we propose a novel Deep Micro-Dictionary Learning and Coding Network (DDLCN). DDLCN has most of the standard deep learning layers (pooling, fully, connected, input/output, etc.) but the main difference ... 详细信息
来源: 评论
One-shot domain adaptation in multiple sclerosis lesion segmentation using convolutional neural networks
arXiv
收藏 引用
arXiv 2018年
作者: Valverde, Sergi Salem, Mostafa Cabezas, Mariano Pareto, Deborah Vilanova, Joan C. Ramió-Torrentà, Lluís Rovira, Àlex Salvi, Joaquim Oliver, Arnau Lladó, Xavier Research institute of Computer Vision and Robotics University of Girona Spain Computer Science Department Faculty of Computers and Information Assiut University Egypt Magnetic Resonance Unit Dept of Radiology Vall d’Hebron University Hospital Spain Girona Magnetic Resonance Center Spain Multiple Sclerosis and Neuroimmunology Unit Dr. Josep Trueta University Hospital Spain
In recent years, several convolutional neural network (CNN) methods have been proposed for the automated white matter lesion segmentation of multiple sclerosis (MS) patient images, due to their superior performance co... 详细信息
来源: 评论