咨询与建议

限定检索结果

文献类型

  • 269 篇 会议
  • 218 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 489 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 297 篇 工学
    • 169 篇 计算机科学与技术...
    • 129 篇 软件工程
    • 114 篇 控制科学与工程
    • 50 篇 生物工程
    • 43 篇 信息与通信工程
    • 39 篇 电气工程
    • 38 篇 光学工程
    • 38 篇 生物医学工程(可授...
    • 33 篇 机械工程
    • 32 篇 仪器科学与技术
    • 27 篇 电子科学与技术(可...
    • 17 篇 动力工程及工程热...
    • 14 篇 交通运输工程
    • 12 篇 安全科学与工程
    • 10 篇 航空宇航科学与技...
    • 8 篇 化学工程与技术
    • 7 篇 力学(可授工学、理...
  • 144 篇 理学
    • 66 篇 数学
    • 54 篇 生物学
    • 44 篇 物理学
    • 23 篇 统计学(可授理学、...
    • 14 篇 系统科学
    • 8 篇 化学
  • 54 篇 管理学
    • 44 篇 管理科学与工程(可...
    • 21 篇 工商管理
    • 11 篇 图书情报与档案管...
  • 32 篇 医学
    • 31 篇 临床医学
    • 22 篇 基础医学(可授医学...
    • 14 篇 药学(可授医学、理...
  • 9 篇 农学
  • 7 篇 经济学
    • 7 篇 应用经济学
  • 6 篇 法学
  • 3 篇 教育学
  • 2 篇 艺术学
  • 1 篇 军事学

主题

  • 38 篇 robot sensing sy...
  • 37 篇 computer science
  • 32 篇 mobile robots
  • 30 篇 robots
  • 27 篇 laboratories
  • 21 篇 navigation
  • 20 篇 robot kinematics
  • 17 篇 embedded system
  • 15 篇 orbital robotics
  • 15 篇 computational mo...
  • 12 篇 intelligent robo...
  • 12 篇 kinematics
  • 12 篇 computer vision
  • 12 篇 robustness
  • 11 篇 motion planning
  • 11 篇 control systems
  • 11 篇 feature extracti...
  • 11 篇 humans
  • 10 篇 sensor systems
  • 10 篇 cameras

机构

  • 14 篇 embedded vision ...
  • 7 篇 embedded vision ...
  • 7 篇 jiaxing research...
  • 7 篇 research center ...
  • 6 篇 university of sc...
  • 6 篇 department of re...
  • 6 篇 ji hua laborator...
  • 6 篇 ihu strasbourg s...
  • 6 篇 robotics researc...
  • 5 篇 robotic embedded...
  • 5 篇 shenzhen institu...
  • 5 篇 state key labora...
  • 5 篇 faculty of mathe...
  • 5 篇 heidelberg
  • 4 篇 robotics and int...
  • 4 篇 robotics researc...
  • 4 篇 robotics researc...
  • 4 篇 department of el...
  • 4 篇 department of co...
  • 4 篇 centre for medic...

作者

  • 26 篇 kryjak tomasz
  • 22 篇 g.s. sukhatme
  • 12 篇 sukhatme gaurav ...
  • 8 篇 wang jiankun
  • 7 篇 szolc hubert
  • 6 篇 matarić maja j.
  • 6 篇 ma jun
  • 6 篇 meng max q.-h.
  • 6 篇 blachut krzyszto...
  • 6 篇 t.c. hsia
  • 6 篇 m.j. mataric
  • 6 篇 m.a. batalin
  • 6 篇 a. howard
  • 6 篇 karsten berns
  • 5 篇 wasala mateusz
  • 5 篇 bakas spyridon
  • 5 篇 reyes mauricio
  • 5 篇 baumgartner mich...
  • 5 篇 gaurav s. sukhat...
  • 5 篇 maier-hein lena

语言

  • 454 篇 英文
  • 30 篇 其他
  • 5 篇 中文
检索条件"机构=Robotics Embedded Systems Laboratory Robotics Research Laboratory Department of Computer Science"
489 条 记 录,以下是191-200 订阅
排序:
Asymmetric CNN for image super-resolution
arXiv
收藏 引用
arXiv 2021年
作者: Tian, Chunwei Xu, Yong Zuo, Wangmeng Lin, Chia-Wen Zhang, David The Bio-Computing Research Center Harbin Institute of Technology ShenzhenShenzhenGuangdong518055 China Shenzhen Key Laboratory of Visual Object Detection and Recognition ShenzhenGuangdong518055 China The School of Computer Science and Technology Harbin Institute of Technology HarbinHeilongjiang150001 China The Peng Cheng Laboratory ShenzhenGuangdong518055 China Shenzhen Key Laboratory of Visual Object Detection and Recognition Shenzhen Guangdong518055 China The Department of Electrical Engineering The Institute of Communications Engineering National Tsing Hua University Hsinchu Taiwan ShenzhenGuangdong518172 China The Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China
Deep convolutional neural networks (CNNs) have been widely applied for low-level vision over the past five years. According to nature of different applications, designing appropriate CNN architectures is developed. Ho... 详细信息
来源: 评论
Learning data-adaptive non-parametric kernels
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning research 2020年 第1期21卷 8590-8628页
作者: Fanghui Liu Xiaolin Huang Chen Gong Jie Yang Li Li Department of Electrical Engineering ESAT-STADIUS KU Leuven Belgium Institute of Image Processing and Pattern Recognition Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China PCA Lab Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education School of Computer Science and Engineering Nanjing University of Science and Technology China and Department of Computing Hong Kong Polytechnic University Hong Kong SAR China Department of Automation BNRist Tsinghua University China
In this paper, we propose a data-adaptive non-parametric kernel learning framework in margin based kernel methods. In model formulation, given an initial kernel matrix, a data-adaptive matrix with two constraints is i... 详细信息
来源: 评论
Fast perception, planning, and execution for a robotic butler: Wheeled humanoid m-hubo
arXiv
收藏 引用
arXiv 2020年
作者: Lee, Moonyoung Heo, Yujin Park, Jinyong Yang, Hyun-Dae Jang, Ho-Deok Benz, Philipp Park, Hyunsub Kweon, In So Oh, Jun-Ho Humanoid Robot Research Center Department of Mechanical Engineering Korea Advanced Institute of Science and Technology 291 Daehak-ro Yuseong-gu Daejeon34141 Korea Republic of Robotics and Computer Vision Laboratory Department of Electrical Engineering Korea Advanced Institute of Science and Technology 291 Daehak-ro Yuseong-gu Daejeon34141 Korea Republic of
As the aging population grows at a rapid rate, there is an ever growing need for service robot platforms that can provide daily assistance at practical speed with reliable performance. In order to assist with daily ta... 详细信息
来源: 评论
F2A2: Flexible Fully-decentralized Approximate Actor-critic for Cooperative Multi-agent Reinforcement Learning
arXiv
收藏 引用
arXiv 2020年
作者: Li, Wenhao Jin, Bo Wang, Xiangfeng Yan, Junchi Zha, Hongyuan School of Data Science The Chinese University of Hong Kong Shenzhen China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen518172 China School of Software Engineering Shanghai Research Institute for Intelligent Autonomous Systems Tongji University Shanghai201804 China School of Computer Science and Technology Key Laboratory of Mathematics and Engineering Applications Ministry of Education East China Normal University Shanghai200062 China Department of Computer Science and Engineering Key Laboratory of Artificial Intelligence Ministry of Education Shanghai Jiao Tong University Shanghai200240 China
Traditional centralized multi-agent reinforcement learning (MARL) algorithms are sometimes unpractical in complicated applications due to non-interactivity between agents, the curse of dimensionality, and computation ... 详细信息
来源: 评论
A multi-objective deep reinforcement learning algorithm for spatio-temporal latency optimization in mobile IoT-enabled edge computing networks
收藏 引用
Simulation Modelling Practice and Theory 2025年 143卷
作者: Khoshvaght, Parisa Haider, Amir Rahmani, Amir Masoud Gharehchopogh, Farhad Soleimanian Anka, Ferzat Lansky, Jan Hosseinzadeh, Mehdi Institute of Research and Development Duy Tan University Da Nang Viet Nam School of Engineering & Technology Duy Tan University Da Nang Viet Nam Centre for Research Impact & Outcome Chitkara University Institute of Engineering and Technology Chitkara University Punjab Rajpura140401 India Department of AI and Robotics Sejong University Seoul05006 Korea Republic of Future Technology Research Center National Yunlin University of Science and Technology Yunlin Taiwan Department of Computer Engineering Ur. C. Islamic Azad University Urmia Iran Fatih Sultan Mehmet Vakif University Istanbul Turkey Department of Computer Science and Mathematics Faculty of Economic Studies University of Finance and Administration Prague Czech Republic Pattern Recognition and Machine Learning Laboratory School of Computing Gachon University Seongnam Korea Republic of
The rapid increase in Mobile Internet of Things (IoT) devices requires novel computational frameworks. These frameworks must meet strict latency and energy efficiency requirements in Edge and Mobile Edge Computing (ME... 详细信息
来源: 评论
A registration-aided domain adaptation network for 3D Point cloud based place recognition
arXiv
收藏 引用
arXiv 2020年
作者: Qiao, Zhijian Hu, Hanjiang Shi, Weiang Chen, Siyuan Liu, Zhe Wang, Hesheng Department of Automation Insititue of Medical Robotics Key Laboratory of System Control and Information Processing of Ministry of Education Key Laboratory of Marine Intelligent Equipment and System of Ministry of Education Shanghai Jiao Tong University Shanghai200240 China Beijing Advanced Innovation Center for Intelligent Robots and Systems Beijing Institute of Technology China Department of Mechanical Engineering Carnegie Mellon University United States Department of Computer Science and Technology University of Cambridge United Kingdom
In the field of large-scale SLAM for autonomous driving and mobile robotics, 3D point cloud based place recognition has aroused significant research interest due to its robustness to changing environments with drastic... 详细信息
来源: 评论
Deep learning methods for automatic evaluation of delayed enhancement-MRI. The results of the EMIDEC challenge
arXiv
收藏 引用
arXiv 2021年
作者: Lalande, Alain Chen, Zhihao Pommier, Thibaut Decourselle, Thomas Qayyum, Abdul Salomon, Michel Ginhac, Dominique Skandarani, Youssef Boucher, Arnaud Brahim, Khawla de Bruijne, Marleen Camarasa, Robin Correia, Teresa M. Feng, Xue Girum, Kibrom B. Hennemuth, Anja Huellebrand, Markus Hussain, Raabid Ivantsits, Matthias Ma, Jun Meyer, Craig Sharma, Rishabh Shi, Jixi Tsekos, Nikolaos V. Varela, Marta Wang, Xiyue Yang, Sen Zhang, Hannu Zhang, Yichi Zhou, Yuncheng Zhuang, Xiahai Couturier, Raphael Meriaudeau, Fabrice ImViA laboratory University of Burgundy Dijon France MRI department University Hospital of Dijon Dijon France Femto-ST laboratory University of Franche-Comté Belfort France Cardiology department University Hospital of Dijon Dijon France CASIS Company Quetigny France National Engineering School of Sousse University of Sousse Sousse Tunisia LASEE laboratory National Engineering School of Monastir University of Monastir Monastir Tunisia Biomedical Imaging Group Rotterdam Erasmus MC Rotterdam Netherlands Department of Radiology and Nuclear Medicine Erasmus MC Rotterdam Netherlands Department of Computer Science University of Copenhagen Copenhagen Denmark Centre of Marine Sciences University of Algarve Faro Portugal School of Biomedical Engineering and Imaging Sciences King’s College London London United Kingdom Department of Biomedical Engineering University of Virginia Charlottesville United States Charité – Universitätsmedizin Berlin Berlin Germany Fraunhofer MEVIS Bremen Germany German Centre for Cardiovascular Research Berlin Germany Department of Mathematics Nanjing University of Science and Technology Nanjing China Data Analysis and Intelligent Systems Lab Department of Computer Science University of Houston Houston United States Medical Robotics and Imaging Lab Department of Computer Science University of Houston Houston United States National Heart and Lung Institute Imperial College London London United Kingdom College of Computer Science Sichuan University Chengdu China College of Biomedical Engineering Sichuan University Chengdu China School of Biological Science and Medical Engineering Beihang University Beijing China School of Data Science Fudan University Shanghai China
A key factor for assessing the state of the heart after myocardial infarction (MI) is to measure whether the myocardium segment is viable after reperfusion or revascularization therapy. Delayed enhancement-MRI or DE-M... 详细信息
来源: 评论
SoftHGNN: Soft Hypergraph Neural Networks for General Visual Recognition
arXiv
收藏 引用
arXiv 2025年
作者: Lei, Mengqi Wu, Yihong Li, Siqi Zheng, Xinhu Wang, Juan Gao, Yue Du, Shaoyi BNRist THUIBCS BLBCI School of Software Tsinghua University Beijing100084 China Department of Mechanical Engineering Taiyuan University of Technology Taiyuan030024 China Guangzhou China Department of Electronic and Computer Engineering The Hong Kong University of Science and Technology Hong Kong Department of Ultrasound the Second Affiliated Hospital of Xi’an Jiaotong University Xi’an China Department of Ultrasound the Second Affiliated Hospital Xi’an Jiaotong University China State Key Laboratory of Human-Machine Hybrid Augmented Intelligence National Engineering Research Center for Visual Information and Applications Institute of Artificial Intelligence and Robotics Xi’an Jiaotong University Xi’an710049 China
Visual recognition relies on understanding both the semantics of image tokens and the complex interactions among them. Mainstream self-attention methods, while effective at modeling global pair-wise relations, fail to... 详细信息
来源: 评论
Active interactions between animals and technology: biohybrid approaches for animal behaviour research
收藏 引用
Animal Behaviour 2025年 224卷
作者: Papadopoulou, M. Ball, M. Bartashevich, P. Burns, A.L.J. Chiara, V. Clark, M.A. Costelloe, B.R. Fele, M. French, F. Hauert, S. Heinrich, M.K. Herbert-Read, J.E. Hoitt, J. Ioannou, C.C. Landgraf, T. Matchette, S.R. Polverino, G. Sankey, D.W.E. Scott, D.M. Sridhar, V.H. Strömbom, D. Trianni, V. Vo-Doan, T.T. King, A.J. Department of Biosciences Faculty of Science and Engineering Swansea University Swansea United Kingdom Department of Biology Lafayette College Easton PA United States Institute for Theoretical Biology Department of Biology Humboldt-Universität zu Berlin Berlin Germany Cluster of Excellence ‘Science of Intelligence’ Berlin Germany Department Fish Biology Fisheries and Aquaculture Leibniz Institute of Freshwater Ecology and Inland Fisheries Berlin Germany Faculty of Life Sciences Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences Humboldt-Universität zu Berlin Berlin Germany Museum and Institute of Zoology Polish Academy of Science Warszawa Poland School of Biological Sciences University of Bristol Bristol United Kingdom School of Natural Sciences Macquarie University Sydney Australia Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany Department of Biology University of Konstanz Konstanz Germany Department of Collective Behavior Max Planck Institute of Animal Behavior Konstanz Germany School of Computing and Digital Media London Metropolitan University London United Kingdom Bristol Robotics Laboratory University of Bristol Bristol United Kingdom IRIDIA Université Libre de Bruxelles Brussels Belgium Department of Zoology University of Cambridge Cambridge United Kingdom Department of Mathematics and Computer Science Freie Universität Berlin Berlin Germany Department of Ecological and Biological Sciences University of Tuscia Viterbo Italy School of Natural and Environmental Science Newcastle University Newcastle upon Tyne United Kingdom Centre for Ecology and Conservation Faculty of Environment Science and Economy University of Exeter Penryn Campus Cornwall United Kingdom School of Animal Rural and Environmental Sciences Nottingham Trent University Nottingham United Kingdom Department for the Ecology of Animal Societies Max Planck Institute of Animal Behavior Konstanz Germany Ins
Biohybrid approaches (where living and engineered components are combined) provide new opportunities for advancing animal behaviour research and its applications. This review article and accompanying special issue exp... 详细信息
来源: 评论
Defining The Role Of In-Transit Parauterine Lymphovascular And Lateral Paracervical Lymphatic Tissue Disease In Cervical Cancer: Insights From An International Expert Survey To Enhance Clinical Practice
收藏 引用
International Journal of Gynecological Cancer 2025年 第2期35卷
作者: Matteo Pavone Nicolò Bizzarri Agnieszka Rychlik Jan Persson Anna Fagotti Francesco Fanfani Giovanni Scambia Denis Querleu UOC Ginecologia Oncologica Dipartimento di Scienze per la salute della Donna e del Bambino e di Sanità Pubblica Fondazione Policlinico Universitario A. Gemelli IRCCS Rome Italy IHU Strasbourg Institute of Image-Guided surgery Strasbourg Italy ICube Laboratory of Engineering Computer Science and Imaging Department of Robotics Imaging Teledetection and Healthcare Technologies University of Strasbourg CNRS UMR 7357 Strasbourg France Research Institute against Digestive Cancer IRCAD Strasbourg Strasbourg France Department of Gynecological Oncology Maria Sklodowska-Curie National Research Institute of Oncology Warsaw Poland Department of Obstetrics and Gynaecology Skåne University Hospital Lund Sweden
来源: 评论