咨询与建议

限定检索结果

文献类型

  • 164 篇 期刊文献
  • 151 篇 会议

馆藏范围

  • 315 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 179 篇 工学
    • 97 篇 计算机科学与技术...
    • 92 篇 软件工程
    • 85 篇 控制科学与工程
    • 28 篇 生物工程
    • 24 篇 机械工程
    • 22 篇 信息与通信工程
    • 18 篇 仪器科学与技术
    • 18 篇 建筑学
    • 15 篇 土木工程
    • 13 篇 力学(可授工学、理...
    • 13 篇 交通运输工程
    • 11 篇 生物医学工程(可授...
    • 10 篇 光学工程
    • 10 篇 安全科学与工程
    • 8 篇 船舶与海洋工程
    • 6 篇 化学工程与技术
    • 5 篇 电气工程
  • 83 篇 理学
    • 42 篇 数学
    • 28 篇 生物学
    • 22 篇 统计学(可授理学、...
    • 19 篇 物理学
    • 12 篇 系统科学
    • 8 篇 海洋科学
    • 6 篇 大气科学
  • 22 篇 管理学
    • 14 篇 管理科学与工程(可...
    • 9 篇 图书情报与档案管...
    • 7 篇 工商管理
  • 9 篇 法学
    • 9 篇 社会学
  • 5 篇 医学
    • 5 篇 基础医学(可授医学...
    • 5 篇 临床医学
  • 3 篇 教育学
  • 2 篇 农学

主题

  • 23 篇 task analysis
  • 22 篇 robots
  • 19 篇 planning
  • 16 篇 trajectory
  • 14 篇 reinforcement le...
  • 14 篇 uncertainty
  • 13 篇 visualization
  • 12 篇 training
  • 11 篇 three-dimensiona...
  • 11 篇 measurement
  • 9 篇 shape
  • 8 篇 deep learning
  • 8 篇 safety
  • 7 篇 automation
  • 7 篇 optimization
  • 7 篇 robot sensing sy...
  • 7 篇 navigation
  • 7 篇 semantics
  • 7 篇 robustness
  • 6 篇 computational mo...

机构

  • 44 篇 division of robo...
  • 21 篇 division of robo...
  • 13 篇 abb corporate re...
  • 12 篇 division of robo...
  • 11 篇 division of robo...
  • 10 篇 robotics percept...
  • 9 篇 robotics percept...
  • 9 篇 robotics percept...
  • 8 篇 stockholm
  • 8 篇 robotics percept...
  • 7 篇 digital futures
  • 6 篇 robotics percept...
  • 6 篇 the division of ...
  • 5 篇 robotics percept...
  • 5 篇 robotics percept...
  • 5 篇 abb robotics väs...
  • 5 篇 division of robo...
  • 5 篇 kth royal instit...
  • 5 篇 division of robo...
  • 4 篇 aeronautical sol...

作者

  • 42 篇 kragic danica
  • 28 篇 danica kragic
  • 19 篇 iolanda leite
  • 16 篇 folkesson john
  • 16 篇 john folkesson
  • 15 篇 tumova jana
  • 15 篇 jana tumova
  • 14 篇 leite iolanda
  • 14 篇 christian smith
  • 14 篇 kjellström hedvi...
  • 13 篇 jensfelt patric
  • 11 篇 smith christian
  • 10 篇 petter ögren
  • 10 篇 azizpour hossein
  • 9 篇 yin hang
  • 9 篇 patric jensfelt
  • 8 篇 yiannis karayian...
  • 8 篇 nils bore
  • 8 篇 vinuesa ricardo
  • 8 篇 iovino matteo

语言

  • 291 篇 英文
  • 24 篇 其他
检索条件"机构=Robotics Perception and Learning"
315 条 记 录,以下是1-10 订阅
排序:
An Efficient Risk-aware Branch MPC for Automated Driving that is Robust to Uncertain Vehicle Behaviors  63
An Efficient Risk-aware Branch MPC for Automated Driving tha...
收藏 引用
63rd IEEE Conference on Decision and Control, CDC 2024
作者: Zhang, Luyao Pantazis, Georgios Han, Shaohang Grammatico, Sergio Delft University of Technology Delft Center for Systems and Control Netherlands Kth Royal Institute of Technology Division of Robotics Perception and Learning Sweden
One of the critical challenges in automated driving is ensuring safety of automated vehicles despite the unknown behavior of the other vehicles. Although motion prediction modules are able to generate a probability di... 详细信息
来源: 评论
A Framework for learning Behavior Trees in Collaborative Robotic Applications  19
A Framework for Learning Behavior Trees in Collaborative Rob...
收藏 引用
19th IEEE International Conference on Automation Science and Engineering, CASE 2023
作者: Iovino, Matteo Styrud, Jonathan Falco, Pietro Smith, Christian Abb Corporate Research Västerås Sweden Kth - Royal Institute of Technology Division of Robotics Perception and Learning Stockholm Sweden Abb Robotics Västerås Sweden
In modern industrial collaborative robotic applications, it is desirable to create robot programs automatically, intuitively, and time-efficiently. Moreover, robots need to be controlled by reactive policies to face t... 详细信息
来源: 评论
Network Parameter Control in Cellular Networks through Graph-Based Multi-Agent Constrained Reinforcement learning  19
Network Parameter Control in Cellular Networks through Graph...
收藏 引用
19th IEEE International Conference on Automation Science and Engineering, CASE 2023
作者: Forsberg, Albin Larsson Nikou, Alexandros Feljan, Aneta Vulgarakis Tumova, Jana Stockholm Sweden Kth Division of Robotics Perception and Learning Department of Electrical Engineering and Computer Science Stockholm Sweden Digital Futures United States
Cellular networks are growing in complexity at increasing speed and the geographical locations in which they are deployed in are getting denser. Traditional control methods fall short in providing a scalable and dynam... 详细信息
来源: 评论
One Map to Find Them All: Real-time Open-Vocabulary Mapping for Zero-shot Multi-Object Navigation
arXiv
收藏 引用
arXiv 2024年
作者: Busch, Finn Lukas Homberger, Timon Ortega-Peimbert, Jesús Yang, Quantao Andersson, Olov Division of Robotics Perception and Learning KTH Royal Institute of Technology Sweden
The capability to efficiently search for objects in complex environments is fundamental for many real-world robot applications. Recent advances in open-vocabulary vision models have resulted in semantically-informed o... 详细信息
来源: 评论
Pushing Everything Everywhere All At Once: Probabilistic Prehensile Pushing
arXiv
收藏 引用
arXiv 2025年
作者: Perugini, Patrizio Lundell, Jens Friedl, Katharina Kragic, Danica Flanders Make Belgium The division of Robotics Perception and Learning at KTH Stockholm Sweden
We address prehensile pushing, the problem of manipulating a grasped object by pushing against the environment. Our solution is an efficient nonlinear trajectory optimization problem relaxed from an exact mixed intege... 详细信息
来源: 评论
A Control- Theoretic Framework for Voronoi-like Space Partitioning in Multi-Agent Drone Systems with Second-Order Costs
A Control- Theoretic Framework for Voronoi-like Space Partit...
收藏 引用
International Conference on Unmanned Aircraft Systems (ICUAS)
作者: Andre N. Costa Petter Ogren Division of Robotics Perception and Learning (RPL) Royal Institute of Technology (KTH) Stockholm Sweden
We present a framework for space partitioning, where the Regions of Influence (ROIs) of the agents are defined based on proximity metrics derived from the cost of optimal control problems. Efficient space partitioning... 详细信息
来源: 评论
Streaming Network for Continual learning of Object Relocations under Household Context Drifts
arXiv
收藏 引用
arXiv 2024年
作者: Bartoli, Ermanno Doğan, Fethiye Irmak Leite, Iolanda Faculty of Robotics Perception and Learning KTH Royal Institute of Technology Stockholm Sweden
In most applications, robots need to adapt to new environments and be multi-functional without forgetting previous information. This requirement gains further importance in real-world scenarios where robots operate in... 详细信息
来源: 评论
A RIEMANNIAN FRAMEWORK FOR learning REDUCED-ORDER LAGRANGIAN DYNAMICS
arXiv
收藏 引用
arXiv 2024年
作者: Friedl, Katharina Jaquier, Noémie Lundell, Jens Asfour, Tamim Kragic, Danica Division of Robotics Perception and Learning KTH Royal Institute of Technology Sweden Germany
By incorporating physical consistency as inductive bias, deep neural networks display increased generalization capabilities and data efficiency in learning nonlinear dynamic models. However, the complexity of these mo... 详细信息
来源: 评论
Quasi-static Soft Fixture Analysis of Rigid and Deformable Objects
Quasi-static Soft Fixture Analysis of Rigid and Deformable O...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Yifei Dong Florian T. Pokorny Division of Robotics Perception and Learning KTH Royal Institute of Technology Stockholm Sweden
We present a sampling-based approach to reasoning about the caging-based manipulation of rigid and a simplified class of deformable 3D objects subject to energy constraints. Towards this end, we propose the notion of ... 详细信息
来源: 评论
Robust MITL planning under uncertain navigation times
Robust MITL planning under uncertain navigation times
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Alexis Linard Anna Gautier Daniel Duberg Jana Tumova KTH Royal Institute of Technology Stockholm Sweden Division of Robotics Perception and Learning
In environments like offices, the duration of a robot’s navigation between two locations may vary over time. For instance, reaching a kitchen may take more time during lunchtime since the corridors are crowded with p... 详细信息
来源: 评论