咨询与建议

限定检索结果

文献类型

  • 585 篇 会议
  • 370 篇 期刊文献
  • 10 册 图书

馆藏范围

  • 965 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 525 篇 工学
    • 236 篇 计算机科学与技术...
    • 221 篇 控制科学与工程
    • 214 篇 软件工程
    • 102 篇 机械工程
    • 73 篇 电气工程
    • 55 篇 光学工程
    • 53 篇 信息与通信工程
    • 49 篇 生物医学工程(可授...
    • 47 篇 生物工程
    • 44 篇 电子科学与技术(可...
    • 38 篇 仪器科学与技术
    • 20 篇 动力工程及工程热...
    • 20 篇 化学工程与技术
    • 18 篇 交通运输工程
    • 16 篇 材料科学与工程(可...
    • 15 篇 船舶与海洋工程
    • 14 篇 力学(可授工学、理...
    • 14 篇 土木工程
    • 12 篇 安全科学与工程
  • 268 篇 理学
    • 139 篇 数学
    • 77 篇 系统科学
    • 71 篇 物理学
    • 49 篇 生物学
    • 33 篇 统计学(可授理学、...
    • 16 篇 化学
  • 94 篇 管理学
    • 83 篇 管理科学与工程(可...
    • 19 篇 工商管理
  • 46 篇 医学
    • 39 篇 临床医学
    • 25 篇 基础医学(可授医学...
    • 20 篇 药学(可授医学、理...
  • 7 篇 农学
  • 4 篇 法学
  • 3 篇 教育学
  • 2 篇 艺术学
  • 1 篇 经济学

主题

  • 65 篇 robotics and aut...
  • 58 篇 control systems
  • 53 篇 laboratories
  • 50 篇 intelligent robo...
  • 49 篇 robot sensing sy...
  • 45 篇 mobile robots
  • 31 篇 robot kinematics
  • 29 篇 robots
  • 26 篇 humans
  • 26 篇 robustness
  • 25 篇 cameras
  • 23 篇 systems engineer...
  • 23 篇 neural networks
  • 22 篇 automation
  • 21 篇 artificial intel...
  • 21 篇 intelligent syst...
  • 20 篇 robust control
  • 20 篇 robot vision sys...
  • 19 篇 convergence
  • 19 篇 uncertainty

机构

  • 39 篇 state key labora...
  • 24 篇 school of electr...
  • 23 篇 school of automa...
  • 22 篇 department of el...
  • 22 篇 beijing key labo...
  • 18 篇 ieee
  • 17 篇 hubei key labora...
  • 17 篇 university of ch...
  • 16 篇 seventh research...
  • 16 篇 state key labora...
  • 14 篇 department of au...
  • 12 篇 school of automa...
  • 12 篇 state key labora...
  • 12 篇 department of el...
  • 11 篇 department of el...
  • 11 篇 robotics and int...
  • 11 篇 institutes for r...
  • 10 篇 engineering rese...
  • 9 篇 department of ly...
  • 8 篇 laboratory of ro...

作者

  • 26 篇 ning xi
  • 24 篇 xi ning
  • 24 篇 junping du
  • 24 篇 fashan yu
  • 24 篇 yingmin jia
  • 20 篇 liu lianqing
  • 17 篇 witold pedrycz
  • 17 篇 wang yuechao
  • 17 篇 lianqing liu
  • 16 篇 yuechao wang
  • 16 篇 min wu
  • 16 篇 luefeng chen
  • 15 篇 fei-yue wang
  • 14 篇 johansson karl h...
  • 14 篇 yi xinlei
  • 14 篇 dong zaili
  • 14 篇 yang tao
  • 13 篇 a.c. sanderson
  • 13 篇 peter p. groumpo...
  • 12 篇 pedrycz witold

语言

  • 917 篇 英文
  • 35 篇 其他
  • 13 篇 中文
检索条件"机构=Robotics and Automation Laboratory. Department of Electrical Computer and Systems Engineering"
965 条 记 录,以下是311-320 订阅
排序:
Simultaneous state and parameter estimation: The role of sensitivity analysis
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Jianbang Gnanasekar, Aristarchus Zhang, Yi Bo, Song Liu, Jinfeng Hu, Jingtao Zou, Tao Key Laboratory of Networked Control Systems Shenyang Institute of Automation Chinese Academy of Sciences Shenyang110016 China Institute for Robotics & Intelligent Manufacturing Chinese Academy of Sciences Shenyang110016 China University of Chinese Academy of Sciences Beijing100049 China Department of Chemical & Materials Engineering University of Alberta EdmontonABT6G 1H9 Canada Key Laboratory of Energy Thermal Conversion & Control Southeast University Nanjing210096 China School of Mechanical and Electrical Engineering Guangzhou University Guangzhou510006 China
State and parameter estimation is essential for process monitoring and control. Observability plays an important role in both state and parameter estimation. In simultaneous state and parameter estimation, the paramet... 详细信息
来源: 评论
Primal-dual optimization methods for large-scale and distributed data analytics
arXiv
收藏 引用
arXiv 2019年
作者: Jakovetić, Dušan Bajović, Dragana Xavier, João Moura, José M.F. Faculty of Sciences University of Novi Sad Novi Sad Serbia Faculty of Technical Sciences University of Novi Sad Novi Sad Serbia Instituto Superior Tećnico Universidade de Lisboa Institute for Systems and Robotics Laboratory for Robotics and Engineering Systems Lisbon Portugal Department of Electrical and Computer Engineering Carnegie Mellon University PittsburghPA United States
The augmented Lagrangian method (ALM) is a classical optimization tool that solves a given "difficult" (constrained) problem via finding solutions of a sequence of "easier" (often unconstrained) su... 详细信息
来源: 评论
MuPNet: Multi-modal predictive coding network for place recognition by unsupervised learning of joint visuo-tactile latent representations
arXiv
收藏 引用
arXiv 2019年
作者: Struckmeier, Oliver Tiwari, Kshitij Dora, Shirin Pearson, Martin J. Bohte, Sander M. Pennartz, Cyriel M.A. Kyrki, Ville Department of Electrical Engineering and Automation Aalto University Espoo02150 Finland Cognitive and Systems Neuroscience Group University of Amsterdam Centrum Wiskunde & Informatica Amsterdam Netherlands Bristol Robotics Laboratory BristolBS16 1QY United Kingdom
Extracting and binding salient information from different sensory modalities to determine common features in the environment is a significant challenge in robotics. Here we present MuPNet (Multi-modal Predictive Codin... 详细信息
来源: 评论
Hierarchic neighbors embedding
arXiv
收藏 引用
arXiv 2019年
作者: Liu, Shenglan Yu, Yang Liu, Yang Qiao, Hong Feng, Lin Feng, Jiashi School of Computer Science and Technology Faculty of Electronic Information and Electrical Engineering Dalian University of Technology Dalian Liaoning116024 China State Key Laboratory of Management and Control for Complex Systems Institute of Automation Chinese Academy of Sciences Beijing100190 China Department of Electrical and Computer Engineering National University of Singapore Singapore Singapore
Manifold learning now plays a very important role in machine learning and many relevant applications. Although its superior performance in dealing with nonlinear data distribution, data sparsity is always a thorny kno... 详细信息
来源: 评论
Representative task self-selection for flexible clustered lifelong learning
arXiv
收藏 引用
arXiv 2019年
作者: Sun, Gan Cong, Yang Wang, Qianqian Zhong, Bineng Fu, Yun State Key Laboratory of Robotics Shenyang Institute of Automation Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences Shenyang110016 China University of Chinese Academy of Sciences Beijing China Department of Electrical and Computer Engineering Northeastern University BostonMA02115 United States Xidian University. Xian Shanxi710071 China Huaqiao University Xiamen Fujian361021 China Department of Electrical and Computer Engineering Khoury College of Computer and Information Sciences Northeastern University BostonMA02115 United States
Consider the lifelong machine learning paradigm whose objective is to learn a sequence of tasks depending on previous experiences, e.g., knowledge library or deep network weights. However, the knowledge libraries or d... 详细信息
来源: 评论
Why is the Winner the Best?
Why is the Winner the Best?
收藏 引用
Conference on computer Vision and Pattern Recognition (CVPR)
作者: M. Eisenmann A. Reinke V. Weru M. D. Tizabi F. Isensee T. J. Adler S. Ali V. Andrearczyk M. Aubreville U. Baid S. Bakas N. Balu S. Bano J. Bernal S. Bodenstedt A. Casella V. Cheplygina M. Daum M. De Bruijne A. Depeursinge R. Dorent J. Egger D. G. Ellis S. Engelhardt M. Ganz N. Ghatwary G. Girard P. Godau A. Gupta L. Hansen K. Harada M. Heinrich N. Heller A. Hering A. Huaulmé P. Jannin A. E. Kavur O. Kodym M. Kozubek J. Li H. Li J. Ma C. Martín-Isla B. Menze A. Noble V. Oreiller N. Padoy S. Pati K. Payette T. Rädsch J. Rafael-Patiño V. Singh Bawa S. Speidel C. H. Sudre K. Van Wijnen M. Wagner D. Wei A. Yamlahi M. H. Yap C. Yuan M. Zenk A. Zia D. Zimmerer D. Aydogan B. Bhattarai L. Bloch R. Brüngel J. Cho C. Choi Q. Dou I. Ezhov C. M. Friedrich C. Fuller R. R. Gaire A. Galdran Á. García Faura M. Grammatikopoulou S. Hong M. Jahanifar I. Jang A. Kadkhodamohammadi I. Kang F. Kofler S. Kondo H. Kuijf M. Li M. Luu T. Martinčič P. Morais M. A. Naser B. Oliveira D. Owen S. Pang J. Park S. Park S. Płotka E. Puybareau N. Rajpoot K. Ryu N. Saeed A. Shephard P. Shi D. Štepec R. Subedi G. Tochon H. R. Torres H. Urien J. L. Vilaça K. A. Wahid H. Wang J. Wang L. Wang X. Wang B. Wiestler M. Wodzinski F. Xia J. Xie Z. Xiong S. Yang Y. Yang Z. Zhao K. Maier-Hein P. F. Jäger A. Kopp-Schneider L. Maier-Hein Division of Intelligent Medical Systems German Cancer Research Center (DKFZ) Heidelberg Germany Helmholtz Imaging German Cancer Research Center (DKFZ) Heidelberg Germany Faculty of Mathematics and Computer Science Heidelberg University Heidelberg Germany Division of Biostatistics German Cancer Research Center (DKFZ) Heidelberg Germany Division of Medical Image Computing German Cancer Research Center (DKFZ) Heidelberg Germany Faculty of Engineering and Physical Sciences School of Computing University of Leeds Leeds UK Institute of Informatics School of Management HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland Sierre Switzerland Department of Nuclear Medicine and Molecular Imaging Lausanne University Hospital Lausanne Switzerland Technische Hochschule Ingolstadt Ingolstadt Germany Center for Artificial Intelligence and Data Science for Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA) University of Pennsylvania Philadelphia PA USA Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology University of Washington Seattle WA USA Department of Computer Science Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS) University College London London UK Universitat Autònoma de Barcelona & Computer Vision Center Barcelona Spain Division of Translational Surgical Oncology National Center for Tumor Diseases (NCT/UCC) Dresden Dresden Germany Department of Advanced Robotics Istituto Italiano di Tecnologia Italy Department of Electronics Information and Bioengineering Politecnico di Milano Milan Italy IT University of Copenhagen Copenhagen Denmark Department of General Visceral and Transplantation Surgery Heidelberg University Hospital Heidelberg Germany Department of Radiology and Nuc
International benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from t...
来源: 评论
Saturated Continuous Twisting Algorithm  15
Saturated Continuous Twisting Algorithm
收藏 引用
15th International Workshop on Variable Structure systems, VSS 2018
作者: Golkani, M.A. Fridman, L.M. Koch, S. Reichhartinger, M. Horn, M. Faculty of Electrical and Information Engineering Graz University of Technology Institute of Automation and Control Graz Austria Department of Control Engineering and Robotics Division of Electrical Engineering Engineering Faculty National Autonomous University of Mexico Mexico D.F. Mexico Institute of Automation and Control Graz University of Technology Christian Doppler Laboratory for Model Based Control of Complex Test Bed Systems Graz Austria
In this paper, a second-order system affected by perturbations is considered. A feedback control law adopting the continuous twisting algorithm is designed such that a saturated and continuous control signal is introd... 详细信息
来源: 评论
Beam Squint and Channel Estimation for Wideband mmWave Massive MIMO-OFDM systems
arXiv
收藏 引用
arXiv 2019年
作者: Wang, Bolei Jian, Mengnan Gao, Feifei Ye Li, Geoffrey Jin, Shi Lin, Hai State Key Lab of Intelligent Technologies and Systems Tsinghua University Department of Automation Tsinghua University Beijing China School of Electrical and Computer Engineering Georgia Institute of Technology AtlantaGA United States National Communications Research Laboratory Southeast University Nanjing210096 China Department of Electrical and Information Systems Graduate School of Engineering Osaka Prefecture University SakaiOsaka Japan
With the increasing scale of antenna arrays in wideband millimeter-wave (mmWave) communications, the physical propagation delays of electromagnetic waves traveling across the whole array will become large and comparab... 详细信息
来源: 评论
Energetic electron precipitation driven by electromagnetic ion cyclotron waves from ELFIN’s low altitude perspective
arXiv
收藏 引用
arXiv 2022年
作者: Angelopoulos, V. Zhang, X.-J. Artemyev, A.V. Mourenas, D. Tsai, E. Wilkins, C. Runov, A. Liu, J. Turner, D.L. Li, W. Khurana, K. Wirz, R.E. Sergeev, V.A. Meng, X. Wu, J. Hartinger, M.D. Raita, T. Shen, Y. An, X. Shi, X. Bashir, M.F. Shen, X. Gan, L. Qin, M. Capannolo, L. Ma, Q. Russell, C.L. Masongsong, E.V. Caron, R. He, I. Iglesias, L. Jha, S. King, J. Kumar, S. Le, K. Mao, J. McDermott, A. Nguyen, K. Norris, A. Palla, A. Roosnovo Tam, J. Xie, E. Yap, R.C. Ye, S. Young, C. Adair, L.A. Shaffer, C. Chung, M. Cruce, P. Lawson, M. Leneman, D. Allen, M. Anderson, M. Arreola-Zamora, M. Artinger, J. Asher, J. Branchevsky, D. Cliffe, M. Colton, K. Costello, C. Depe, D. Domae, B.W. Eldin, S. Fitzgibbon, L. Flemming, A. Frederick, D.M. Gilbert, A. Hesford, B. Krieger, R. Lian, K. McKinney, E. Miller, J.P. Pedersen, C. Qu, Z. Rozario, R. Rubly, M. Seaton, R. Subramanian, A. Sundin, S.R. Tan, A. Thomlinson, D. Turner, W. Wing, G. Wong, C. Zarifian, A. Earth Planetary and Space Sciences Department Institute of Geophysics and Planetary Physics University of California Los Angeles Los AngelesCA90095 United States University of Texas at Dallas RichardsonTX75080 United States CEA DAM DIF Arpajon France Atmospheric and Oceanic Sciences Departments University of California Los AngelesCA United States Johns Hopkins University Applied Physics Laboratory LaurelMD United States Department of Astronomy Center for Space Physics Boston University BostonMA United States Mechanical and Aerospace Engineering Department Henry Samueli School of Engineering University of California Los AngelesCA90095 United States School of Mechanical Industrial Manufacturing Engineering Oregon State University CorvallisOR97331 United States University of St. Petersburg St. Petersburg Russia Jet Propulsion Laboratory California Institute of Technology PasadenaCA91109 United States Space Science Institute BoulderCO80301 United States Sodankylä Geophysical Observatory University of Oulu Sodankylä Finland Materials Science and Engineering Department Henry Samueli School of Engineering University of California Los AngelesCA90095 United States Deloitte Consulting New YorkNY10112 United States Computer Science Department Henry Samueli School of Engineering University of California Los AngelesCA90095 United States Microsoft RedmondWA98052 United States Physics and Astronomy Department University of California Los AngelesCA90095 United States Department of Astronomy and Astrophysics The University of Chicago ChicagoIL60637 United States Raybeam Inc. Mountain ViewCA94041 United States SpaceX HawthorneCA90250 United States Reliable Robotics Corporation Mountain ViewCA94043 United States Los Alamos National Laboratory Los AlamosNM87545 United States Mathematics Department University of California Los AngelesCA90095 United States Planet Labs PBC San FranciscoCA94107 United States KSAT Inc. De
We review comprehensive observations of electromagnetic ion cyclotron (EMIC) wave-driven energetic electron precipitation using data from the energetic electron detector on the Electron Losses and Fields InvestigatioN... 详细信息
来源: 评论
Indirect determination of the mechanical properties of stochastic lattices  5
Indirect determination of the mechanical properties of stoch...
收藏 引用
5th International Conference of engineering Against Failure, ICEAF-V 2018
作者: Maliaris, Georgios Lazaridis, Theologos Sarafis, Ilias T. Kavafaki, Sofia Mechatronics and Systems Automation Laboratory Department of Electrical and Computer Engineering School of Engineering Democritus University of Thrace XanthiGR67100 Greece Mechanical Engineering Department Technological Educational Institute of East Macedonia-Thrace Agios Loukas KavalaGR65404 Greece
Determination of the mechanical behaviour of lattice structures has become a necessity to successfully implement lightweight concepts in various applications. Due to the large surface to volume ratio of these structur... 详细信息
来源: 评论