咨询与建议

限定检索结果

文献类型

  • 244 篇 会议
  • 226 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 473 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 312 篇 工学
    • 182 篇 计算机科学与技术...
    • 163 篇 软件工程
    • 120 篇 控制科学与工程
    • 51 篇 生物工程
    • 46 篇 信息与通信工程
    • 44 篇 生物医学工程(可授...
    • 43 篇 机械工程
    • 40 篇 光学工程
    • 28 篇 电气工程
    • 24 篇 电子科学与技术(可...
    • 22 篇 仪器科学与技术
    • 21 篇 化学工程与技术
    • 12 篇 交通运输工程
    • 10 篇 力学(可授工学、理...
    • 10 篇 建筑学
    • 9 篇 土木工程
    • 8 篇 材料科学与工程(可...
  • 154 篇 理学
    • 54 篇 物理学
    • 54 篇 生物学
    • 47 篇 数学
    • 19 篇 化学
    • 19 篇 统计学(可授理学、...
    • 18 篇 系统科学
  • 68 篇 管理学
    • 42 篇 管理科学与工程(可...
    • 36 篇 图书情报与档案管...
    • 14 篇 工商管理
  • 35 篇 医学
    • 34 篇 临床医学
    • 28 篇 基础医学(可授医学...
    • 20 篇 药学(可授医学、理...
  • 11 篇 法学
    • 11 篇 社会学
  • 3 篇 经济学
  • 3 篇 教育学
  • 2 篇 军事学

主题

  • 16 篇 visualization
  • 15 篇 robots
  • 15 篇 feature extracti...
  • 12 篇 cameras
  • 11 篇 electroencephalo...
  • 11 篇 training
  • 10 篇 mobile robots
  • 9 篇 deep learning
  • 9 篇 convolution
  • 9 篇 robot sensing sy...
  • 9 篇 semantics
  • 8 篇 reinforcement le...
  • 8 篇 image segmentati...
  • 8 篇 monitoring
  • 8 篇 navigation
  • 8 篇 robustness
  • 7 篇 object detection
  • 7 篇 three-dimensiona...
  • 7 篇 planning
  • 7 篇 neural networks

机构

  • 29 篇 shanghai key lab...
  • 23 篇 shanghai enginee...
  • 20 篇 siat branch shen...
  • 16 篇 research center ...
  • 15 篇 ji hua laborator...
  • 13 篇 shenzhen key lab...
  • 11 篇 engineering rese...
  • 10 篇 university of ch...
  • 8 篇 yiwu research in...
  • 7 篇 department of el...
  • 7 篇 yiwu research in...
  • 6 篇 shanghai ai lab
  • 6 篇 department of co...
  • 6 篇 sensetime resear...
  • 6 篇 department of re...
  • 5 篇 research center ...
  • 5 篇 ihu strasbourg s...
  • 5 篇 computer vision ...
  • 5 篇 faculty of mathe...
  • 5 篇 engineering rese...

作者

  • 30 篇 zhang wenqiang
  • 25 篇 qiao yu
  • 14 篇 chen zhaoyu
  • 14 篇 hong lingyi
  • 14 篇 jiang kaixun
  • 12 篇 wang yan
  • 12 篇 guo pinxue
  • 12 篇 li jinglun
  • 10 篇 zhou xinyu
  • 10 篇 lihua zhang
  • 10 篇 gao shuyong
  • 10 篇 xiaoyang kang
  • 8 篇 wang yali
  • 8 篇 ge shuzhi sam
  • 8 篇 mai xinji
  • 8 篇 wilaiprasitporn ...
  • 7 篇 yu jiawen
  • 7 篇 tong xuan
  • 7 篇 wang haoran
  • 7 篇 tao zeng

语言

  • 437 篇 英文
  • 35 篇 其他
  • 2 篇 中文
  • 1 篇 德文
检索条件"机构=Robotics and Computer Technology Lab"
473 条 记 录,以下是311-320 订阅
排序:
Learning to generate unambiguous spatial referring expressions for real-world environments
arXiv
收藏 引用
arXiv 2019年
作者: Doğan, Fethiye Irmak Kalkan, Sinan Leite, Iolanda The Division of Robotics Perception and Learning The School of Electrical Engineering and Computer Science KTH Royal Institute of Technology Stockholm Sweden The KOVAN Research Lab The Department of Computer Engineering Middle East Technical University Ankara Turkey
Referring to objects in a natural and unambiguous manner is crucial for effective human-robot interaction. Previous research on learning-based referring expressions has focused primarily on comprehension tasks, while ... 详细信息
来源: 评论
Assistive gym: A physics simulation framework for assistive robotics
arXiv
收藏 引用
arXiv 2019年
作者: Erickson, Zackory Gangaram, Vamsee Kapusta, Ariel Karen Liu, C. Kemp, Charles C. Healthcare Robotics Lab Georgia Institute of Technology AtlantaGA United States Department of Computer Science Stanford University StanfordCA United States Enway GmbH Berlin Germany
Autonomous robots have the potential to serve as versatile caregivers that improve quality of life for millions of people worldwide. Yet, conducting research in this area presents numerous challenges, including the ri... 详细信息
来源: 评论
Image quality assessment for perceptual image restoration: A new dataset, benchmark and metric
arXiv
收藏 引用
arXiv 2020年
作者: Gu, Jinjin Cai, Haoming Chen, Haoyu Ye, Xiaoxing Ren, Jimmy S. Dong, Chao School of Electrical and Information Engineering University of Sydney Australia Chinese University of Hong Kong Shenzhen Hong Kong ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences SenseTime Research Qing Yuan Research Institute Shanghai Jiao Tong University Shanghai China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
Image quality assessment (IQA) is the key factor for the fast development of image restoration (IR) algorithms. The most recent perceptual IR algorithms based on generative adversarial networks (GANs) have brought in ... 详细信息
来源: 评论
MRS-VPR: A multi-resolution sampling based global visual place recognition method
arXiv
收藏 引用
arXiv 2019年
作者: Yin, Peng Srivatsan, Rangaprasad Arun Chen, Yin Li, Xueqian Zhang, Hongda Xu, Lingyun Li, Lu Jia, Zhenzhong Ji, Jianmin He, Yuqing State Key Laboratory of Robotics Shenyang Institute of Automation Chinese Academy of Sciences Shenyang University of Chinese Academy of Sciences Beijing China School of Computer Science and Technology University of Science and Technology of China Biorobotics Lab Robotics Institute Carnegie Mellon University PittsburghPA15213 United States School of Computer Science University of Beijing University of Posts and Telecommunications Beijing China
Place recognition and loop closure detection are challenging for long-term visual navigation tasks. SeqSLAM is considered to be one of the most successful approaches to achieve long-term localization under varying env... 详细信息
来源: 评论
Learning data-adaptive non-parametric kernels
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2020年 第1期21卷 8590-8628页
作者: Fanghui Liu Xiaolin Huang Chen Gong Jie Yang Li Li Department of Electrical Engineering ESAT-STADIUS KU Leuven Belgium Institute of Image Processing and Pattern Recognition Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China PCA Lab Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education School of Computer Science and Engineering Nanjing University of Science and Technology China and Department of Computing Hong Kong Polytechnic University Hong Kong SAR China Department of Automation BNRist Tsinghua University China
In this paper, we propose a data-adaptive non-parametric kernel learning framework in margin based kernel methods. In model formulation, given an initial kernel matrix, a data-adaptive matrix with two constraints is i... 详细信息
来源: 评论
Assessing Trustworthy AI in Times of COVID-19: Deep Learning for Predicting a Multiregional Score Conveying the Degree of Lung Compromise in COVID-19 Patients
IEEE Transactions on Technology and Society
收藏 引用
IEEE Transactions on technology and Society 2022年 第4期3卷 272-289页
作者: Allahabadi, Himanshi Amann, Julia Balot, Isabelle Beretta, Andrea Binkley, Charles Bozenhard, Jonas Bruneault, Frederick Brusseau, James Candemir, Sema Cappellini, Luca Alessandro Chakraborty, Subrata Cherciu, Nicoleta Cociancig, Christina Coffee, Megan Ek, Irene Espinosa-Leal, Leonardo Farina, Davide Fieux-Castagnet, Genevieve Frauenfelder, Thomas Gallucci, Alessio Giuliani, Guya Golda, Adam Van Halem, Irmhild Hildt, Elisabeth Holm, Sune Kararigas, Georgios Krier, Sebastien A. Kuhne, Ulrich Lizzi, Francesca Madai, Vince I. Markus, Aniek F. Masis, Serg Mathez, Emilie Wiinblad Mureddu, Francesco Neri, Emanuele Osika, Walter Ozols, Matiss Panigutti, Cecilia Parent, Brendan Pratesi, Francesca Moreno-Sanchez, Pedro A. Sartor, Giovanni Savardi, Mattia Signoroni, Alberto Sormunen, Hanna-Maria Spezzatti, Andy Srivastava, Adarsh Stephansen, Annette F. Theng, Lau Bee Tithi, Jesmin Jahan Tuominen, Jarno Umbrello, Steven Vaccher, Filippo Vetter, Dennis Westerlund, Magnus Wurth, Renee Zicari, Roberto V. Ey Netherlands Enterprise Intelligence Department Amsterdam1083 HP Netherlands Eth Zurich Health Ethics and Policy Lab Department of Health Sciences and Technology Zürich8092 Switzerland Center for Diplomatic and Strategic Studies Postgraduate Studies in Diplomacy and International Relations Paris75015 France Pisa56124 Italy Hackensack Meridian Health Bioethics Center EdisonNJ08820 United States University of Oxford Faculty of Philosophy OxfordOX2 6GG United Kingdom Collège André- Laurendeau Philosophie Department MontrealQCH8N 2J4 Canada Université du Québec À Montréal École des Médias MontrealQCH2L 2C4 Canada Pace University Philosophy Department New YorkNY10038 United States The Ohio State University Wexner Medical Center Department of Radiology ColumbusOH43210 United States Humanitas Research Hospital Department of Radiology Milan20089 Italy Humanitas University Department of Biomedical Sciences Milan20089 Italy University of New England Faculty of Science Agriculture Business and Law ArmidaleNSW2351 Australia University of Technology Sydney Faculty of Engineering and Information Technology SydneyNSW2007 Australia Scuola Superiore Sant'Anna European Centre of Excellence on the Regulation of Robotics and Ai Pisa56127 Italy University of Bremen Group of Computer Architecture Bremen28359 Germany New York University Grossman School of Medicine Division of Infectious Diseases and Immunology Department of Medicine New YorkNY10016 United States Digital Institute Ai Research Section Stockholm16731 Sweden Arcada University of Applied Sciences Department of Business Management and Analytics Helsinki00550 Finland University of Brescia Radiological Sciences and Public Health Department of Medical and Surgical Specialties Brescia25121 Italy Sncf Reseau Sa Ethique Groupe La Plaine93418 France Institute of Diagnostic and Interventional Radiology University Hospital Zurich Zürich8091 Switzerland Eindhoven University of Tech
This article's main contributions are twofold: 1) to demonstrate how to apply the general European Union's High-Level Expert Group's (EU HLEG) guidelines for trustworthy AI in practice for the domain of he... 详细信息
来源: 评论
An interactive indoor drone assistant
arXiv
收藏 引用
arXiv 2019年
作者: Fuhrman, Tino Schneider, David Altenberg, Felix Nguyen, Tung Blasen, Simon Constantin, Stefan Waibel, Alex Interactive Systems Lab Institute for Anthropomatics and Robotics Karlsruhe Institute of Technology Karlsruhe76137 Germany School of Computer Science Carnegie Mellon 5000 Forbes Ave PittsburghPA15213 United States
With the rapid advance of sophisticated control algorithms, the capabilities of drones to stabilise, fly and manoeuvre autonomously have dramatically improved, enabling us to pay greater attention to entire missions a... 详细信息
来源: 评论
Learning to Generate Unambiguous Spatial Referring Expressions for Real-World Environments
Learning to Generate Unambiguous Spatial Referring Expressio...
收藏 引用
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
作者: Fethiye Irmak Doğan Sinan Kalkan Iolanda Leite Division of Robotics Perception and Learning from the School of Electrical Engineering and Computer Science KTH Royal Institute of Technology Stockholm Sweden KOVAN Research Lab Middle East Technical University Ankara Turkey
Referring to objects in a natural and unambiguous manner is crucial for effective human-robot interaction. Previous research on learning-based referring expressions has focused primarily on comprehension tasks, while ...
来源: 评论
Improving Heart Rate Estimation on Consumer Grade Wrist-Worn Device Using Post-Calibration Approach
arXiv
收藏 引用
arXiv 2019年
作者: Choksatchawathi, Tanut Ponglertnapakorn, Puntawat Ditthapron, Apiwat Leelaarporn, Pitshaporn Wisutthisen, Thayakorn Piriyajitakonkij, Maytus Wilaiprasitporn, Theerawit Bio-inspired Robotics and Neural Engineering Lab School of Information Science and Technology Vidyasirimedhi Institute of Science & Technology Rayong Thailand Computer Department Worcester Polytechnic Institute WorcesterMA United States School of Information Technology King Mongkut’s University of Technology Thonburi Bangkok Thailand
—The technological advancement in wireless health monitoring allows the development of light-weight wrist-worn wearable devices to be equipped with different sensors. Although the equipped photoplethysmography (PPG) ... 详细信息
来源: 评论
Geometry sharing network for 3D point cloud classification and segmentation
arXiv
收藏 引用
arXiv 2019年
作者: Xu, Mingye Zhou, Zhipeng Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences Siat Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society
In spite of the recent progresses on classifying 3D point cloud with deep CNNs, large geometric transformations like rotation and translation remain challenging problem and harm the final classification performance. T... 详细信息
来源: 评论