咨询与建议

限定检索结果

文献类型

  • 941 篇 会议
  • 518 篇 期刊文献
  • 10 册 图书

馆藏范围

  • 1,469 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 800 篇 工学
    • 391 篇 计算机科学与技术...
    • 322 篇 软件工程
    • 313 篇 控制科学与工程
    • 164 篇 电气工程
    • 133 篇 机械工程
    • 121 篇 信息与通信工程
    • 84 篇 电子科学与技术(可...
    • 69 篇 生物工程
    • 68 篇 生物医学工程(可授...
    • 62 篇 光学工程
    • 60 篇 仪器科学与技术
    • 56 篇 动力工程及工程热...
    • 40 篇 力学(可授工学、理...
    • 34 篇 交通运输工程
    • 28 篇 材料科学与工程(可...
    • 23 篇 航空宇航科学与技...
    • 23 篇 安全科学与工程
    • 22 篇 化学工程与技术
  • 429 篇 理学
    • 223 篇 数学
    • 135 篇 物理学
    • 76 篇 系统科学
    • 73 篇 生物学
    • 59 篇 统计学(可授理学、...
    • 24 篇 化学
  • 158 篇 管理学
    • 127 篇 管理科学与工程(可...
    • 42 篇 工商管理
    • 35 篇 图书情报与档案管...
  • 56 篇 医学
    • 50 篇 临床医学
    • 35 篇 基础医学(可授医学...
    • 26 篇 药学(可授医学、理...
  • 17 篇 法学
  • 15 篇 经济学
  • 12 篇 农学
  • 4 篇 教育学
  • 2 篇 艺术学
  • 1 篇 文学
  • 1 篇 军事学

主题

  • 118 篇 intelligent robo...
  • 78 篇 control systems
  • 73 篇 mobile robots
  • 73 篇 robot sensing sy...
  • 72 篇 laboratories
  • 72 篇 intelligent syst...
  • 46 篇 neural networks
  • 38 篇 power systems
  • 38 篇 robot kinematics
  • 35 篇 robots
  • 33 篇 navigation
  • 33 篇 artificial intel...
  • 32 篇 robustness
  • 30 篇 humans
  • 30 篇 intelligent sens...
  • 29 篇 testing
  • 27 篇 robotics and aut...
  • 26 篇 particle swarm o...
  • 26 篇 adaptive control
  • 25 篇 robot control

机构

  • 24 篇 zhejiang enginee...
  • 23 篇 school of electr...
  • 23 篇 school of automa...
  • 22 篇 beijing key labo...
  • 21 篇 real-time power ...
  • 20 篇 intelligent wave...
  • 19 篇 department of el...
  • 18 篇 ieee
  • 17 篇 hubei key labora...
  • 17 篇 photonic systems...
  • 15 篇 seventh research...
  • 14 篇 research center ...
  • 14 篇 university of ch...
  • 14 篇 intelligent robo...
  • 12 篇 school of electr...
  • 11 篇 robotics and int...
  • 11 篇 institutes for r...
  • 10 篇 real-time power ...
  • 10 篇 state key labora...
  • 10 篇 engineering rese...

作者

  • 54 篇 ganesh k. venaya...
  • 28 篇 venayagamoorthy ...
  • 27 篇 g.k. venayagamoo...
  • 23 篇 yu sunkyu
  • 23 篇 junping du
  • 23 篇 fashan yu
  • 23 篇 yingmin jia
  • 20 篇 park namkyoo
  • 17 篇 witold pedrycz
  • 17 篇 m. jamshidi
  • 17 篇 yang guanghua
  • 17 篇 ma shaodan
  • 16 篇 pedrycz witold
  • 16 篇 min wu
  • 16 篇 luefeng chen
  • 14 篇 l. kleeman
  • 13 篇 ganesh kumar ven...
  • 13 篇 r.c. luo
  • 11 篇 luo ren c.
  • 11 篇 kaoru hirota

语言

  • 1,373 篇 英文
  • 74 篇 其他
  • 22 篇 中文
检索条件"机构=Robotics and Intelligent Systems Laboratory Department of Electrical and Computer Engineering"
1469 条 记 录,以下是501-510 订阅
排序:
Dense r-robust formations on lattices
Dense r-robust formations on lattices
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Luis Guerrero-Bonilla David Saldaña Vijay Kumar Division of Decision and Control Systems in the School of Electrical Engineering and Computer Science KTH Royal Institute of Technology Stockholm Sweden Autonomous and Intelligent Robotics Laboratory (AIRLab) Lehigh University Bethlehem PA USA GRASP Laboratory University of Pennsylvania
Robot networks are susceptible to fail under the presence of malicious or defective robots. Resilient networks in the literature require high connectivity and large communication ranges, leading to high energy consump... 详细信息
来源: 评论
Towards 6G wireless communication networks:vision, enabling technologies, and new paradigm shifts
收藏 引用
Science China(Information Sciences) 2021年 第1期64卷 5-78页
作者: Xiaohu YOU Cheng-Xiang WANG Jie HUANG Xiqi GAO Zaichen ZHANG Mao WANG Yongming HUANG Chuan ZHANG Yanxiang JIANG Jiaheng WANG Min ZHU Bin SHENG Dongming WANG Zhiwen PAN Pengcheng ZHU Yang YANG Zening LIU Ping ZHANG Xiaofeng TAO Shaoqian LI Zhi CHEN Xinying MA Chih-Lin I Shuangfeng HAN Ke LI Chengkang PAN Zhimin ZHENG Lajos HANZO Xuemin (Sherman) SHEN Yingjie Jay GUO Zhiguo DING Harald HAAS Wen TONG Peiying ZHU Ganghua YANG Jun WANG Erik G.LARSSON Hien Quoc NGO Wei HONG Haiming WANG Debin HOU Jixin CHEN Zhe CHEN Zhangcheng HAO Geoffrey Ye LI Rahim TAFAZOLLI Yue GAO H.Vincent POOR Gerhard P.FETTWEIS Ying-Chang LIANG National Mobile Communications Research Laboratory School of Information Science and EngineeringSoutheast University Purple Mountain Laboratories Shanghai Institute of Fog Computing Technology (SHIFT) ShanghaiTech University Research Center for Network Communication Peng Cheng Laboratory State Key Laboratory of Networking and Switching Technology Beijing University of Posts and Telecommunications National Engineering Laboratory for Mobile Network Technologies Beijing University of Posts and Telecommunications National Key Laboratory of Science and Technology on Communications University of Electronic Science and Technology of China (UESTC) China Mobile Research Institute School of Electronics and Computer Science University of Southampton Department of Electrical and Computer Engineering University of Waterloo Global Big Data Technologies Centre (GBDTC) University of Technology Sydney School of Electrical and Electronic Engineering The University of Manchester LiFi Research and Development Centre Institute for Digital CommunicationsSchool of EngineeringThe University of Edinburgh Huawei Technologies Canada Co. Ltd. Huawei Technologies Department of Electrical Engineering (ISY) Link?ping University Institute of Electronics Communications & Information Technology (ECIT)Queen's University Belfast State Key Laboratory of Millimeter Waves School of Information Science and EngineeringSoutheast University School of Electrical and Computer Engineering Georgia Institute of Technology 5G Innovation Centre University of Surrey Princeton University Vodafone Chair Mobile Communications Systems Technische Universit?t Dresden Center for Intelligent Networking and Communications (CINC) University of Electronic Science and Technology of China (UESTC)
The fifth generation(5G) wireless communication networks are being deployed worldwide from 2020 and more capabilities are in the process of being standardized, such as mass connectivity, ultra-reliability,and guarante... 详细信息
来源: 评论
Using Machine Learning Approaches to Localization in an Embedded System on RobotAtFactory 4.0 Competition: A Case Study
Using Machine Learning Approaches to Localization in an Embe...
收藏 引用
IEEE International Conference on Autonomous Robot systems and Competitions (ICARSC)
作者: Luan C. Klein João Braun Felipe N. Martins Heinrich Wörtche Andre Schneider de Oliveira João Mendes Vítor H. Pinto Paulo Costa José Lima Universidade Tecnológica Federal do Paraná Campus Curitiba UTFPR/PR Brasil Research Centre in Digitalization and Intelligent Robotics (CeDRI) Instituto Politécnico de Braganca Campus de Santa Apolonia Portugal Laboratory for Sustainability and Technology in Mountain Regions (SusTEC) Instituto Politécnico de Bragança Bragança Portugal Faculty of Engineering of University of Porto Portugal INESC Technology and Science Porto Portugal Sensors and Smart Systems Group Institute of Engineering Hanze University of Applied Sciences The Netherlands Department of Electrical Engineering Eindhoven University of Technology The Netherlands SYSTEC (DIGI2) ARISE & ECE Dept. Fac. de Engenharia Universidade do Porto Rua Dr. Roberto Frias 4200-465 Porto Portugal
The use of machine learning in embedded systems is an interesting topic, especially with the growth in popularity of the Internet of Things (IoT). The capacity of a system, such as a robot, to self-localize, is a fund... 详细信息
来源: 评论
Emergency Clinical Procedure Detection With Deep Learning
Emergency Clinical Procedure Detection With Deep Learning
收藏 引用
Annual International Conference of the IEEE engineering in Medicine and Biology Society (EMBC)
作者: Lingfeng Li Richard A. Paris Conner Pinson Yan Wang Joseph Coco Jamison Heard Julie A. Adams Daniel V. Fabbri Bobby Bodenheimer Department of Electrical Engineering and Computer Science Vanderbilt University Nashville Tennessee Vanderbilt University Medical Center Nashville Tennessee Department of Electrical and Microelectronic Engineering Rochester Institute of Technology Rochester NY Collaborative Robotics and Intelligent Systems Institute Oregon State University Oregon
Information about a patient's state is critical for hospitals to provide timely care and treatment. Prior work on improving the information flow from emergency medical services (EMS) to hospitals demonstrated the ... 详细信息
来源: 评论
Subterranean MAV Navigation based on Nonlinear MPC with Collision Avoidance Constraints ⁎
收藏 引用
IFAC-PapersOnLine 2020年 第2期53卷 9650-9657页
作者: Sina Sharif Mansouri Christoforos Kanellakis Emil Fresk Björn Lindqvist Dariusz Kominiak Anton Koval Pantelis Sopasakis George Nikolakopoulos Robotics Team Department of Computer Electrical and Space Engineering Luleå University of Technology Luleå SE-97187 Sweden WideFind AB Aurorum 1C Luleå SE-97775 Sweden School of Electronics Electrical Engineering and Computer Science (EEECS) Queen’s University Belfast and Centre for Intelligent Autonomous Manufacturing Systems (i-AMS) United Kingdom
Micro Aerial Vehicles (MAVs) navigation in subterranean environments is gaining attention in the field of aerial robotics, however there are still multiple challenges for collision free navigation in such harsh enviro... 详细信息
来源: 评论
Outage Performance and Optimal Design of MIMO-NOMA Enhanced Small Cell Networks With Imperfect Channel-State Information
arXiv
收藏 引用
arXiv 2022年
作者: Shi, Zheng Wang, Hong Fu, Yaru Yang, Guanghua Ma, Shaodan Ye, Xinrong School of Intelligent Systems Science and Engineering Jinan University Zhuhai519070 China State Key Laboratory of Internet of Things for Smart City University of Macau 999078 China School of Communication and Information Engineering Nanjing University of Posts and Telecommunications Nanjing210003 China National Mobile Communications Research Laboratory Southeast University Nanjing210096 China School of Science and Technology The Open University of Hong Kong Hong Kong State Key Laboratory of Internet of Things for Smart City and the Department of Electrical and Computer Engineering University of Macau 999078 China School of Physics and Electronic Information Anhui Normal University Wuhu241002 China
This paper focuses on boosting the performance of small cell networks (SCNs) by integrating multiple-input multiple-output (MIMO) and non-orthogonal multiple access (NOMA) in consideration of imperfect channel-state i... 详细信息
来源: 评论
Learning offline: Memory replay in biological and artificial reinforcement learning
arXiv
收藏 引用
arXiv 2021年
作者: Roscow, Emma L. Chua, Raymond Costa, Rui Ponte Jones, Matt W. Lepora, Nathan Centre de Recerca Matemàtica Bellaterra Spain McGill University and Mila Montréal Canada Bristol Computational Neuroscience Unit Intelligent Systems Lab Department of Computer Science University of Bristol United Kingdom School of Physiology Pharmacology and Neuroscience University of Bristol Bristol United Kingdom Department of Engineering Mathematics Bristol Robotics Laboratory University of Bristol Bristol United Kingdom
Learning to act in an environment to maximise rewards is among the brain’s key functions. This process has often been conceptualised within the framework of reinforcement learning, which has also gained prominence in... 详细信息
来源: 评论
Regret and cumulative constraint violation analysis for online convex optimization with long term constraints
arXiv
收藏 引用
arXiv 2021年
作者: Yi, Xinlei Li, Xiuxian Yang, Tao Xie, Lihua Chai, Tianyou Johansson, Karl H. School of Electrical Engineering and Computer Science and Digital Futures KTH Royal Institute of Technology Stockholm Sweden Department of Control Science and Engineering College of Electronics and Information Engineering Shanghai Research Institute for Intelligent Autonomous Systems Institute for Advanced Study Tongji University Shanghai China State Key Laboratory of Synthetical Automation for Process Industries Northeastern University Shenyang China School of Electrical and Electronic Engineering Nanyang Technological University Singapore Singapore
This paper considers online convex optimization with long term constraints, where constraints can be violated in intermediate rounds, but need to be satisfied in the long run. The cumulative constraint violation is us... 详细信息
来源: 评论
Incremental Non-Gaussian Inference for SLAM Using Normalizing Flows
arXiv
收藏 引用
arXiv 2021年
作者: Huang, Qiangqiang Pu, Can Khosoussi, Kasra Rosen, David M. Fourie, Dehann How, Jonathan P. Leonard, John J. MIT Computer Science and Artificial Intelligence Laboratory CambridgeMA02139 United States MIT Department of Nuclear Science and Engineering CambridgeMA02139 United States Robotics and Autonomous Systems Group DATA61 CSIRO BrisbaneQLD4069 Australia Northeastern University Department of Electrical and Computer Engineering BostonMA02115 United States NavAbility BostonMA02110 United States MIT Department of Aeronautical and Astronautical Engineering CambridgeMA02139 United States
This paper presents normalizing flows for incremental smoothing and mapping (NF-iSAM), a novel algorithm for inferring the full posterior distribution in SLAM problems with nonlinear measurement models and non-Gaussia... 详细信息
来源: 评论
Abnormal Data Cleaning for Wind Turbines by Image Segmentation Based on Active Shape Model and Class Uncertainty
SSRN
收藏 引用
SSRN 2022年
作者: Liang, Guoyuan Su, Yahao Wu, Xinyu Ma, Jiajun Long, Huan Song, Zhe Guangdong Provincial Key Lab of Robotics and Intelligent System Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Guangdong Province Shenzhen China Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Guangdong Province Shenzhen China Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Guangdong Province Shenzhen China School of Electrical Engineering Southeast University Jiang Su Province Nanjing China School of Business Nanjing University Jiang Su Province Nanjing China
Wind power curve describes the relationship between wind speed and output power of wind turbine, which may be contaminated due to various unexpected factors. Following the idea of image segmentation in our previous wo... 详细信息
来源: 评论