咨询与建议

限定检索结果

文献类型

  • 250 篇 会议
  • 200 篇 期刊文献

馆藏范围

  • 450 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 294 篇 工学
    • 200 篇 计算机科学与技术...
    • 183 篇 软件工程
    • 121 篇 控制科学与工程
    • 49 篇 生物工程
    • 42 篇 生物医学工程(可授...
    • 39 篇 信息与通信工程
    • 32 篇 光学工程
    • 30 篇 机械工程
    • 20 篇 仪器科学与技术
    • 18 篇 电气工程
    • 16 篇 电子科学与技术(可...
    • 13 篇 力学(可授工学、理...
    • 11 篇 交通运输工程
    • 10 篇 建筑学
    • 10 篇 土木工程
    • 6 篇 化学工程与技术
  • 159 篇 理学
    • 80 篇 数学
    • 60 篇 生物学
    • 36 篇 物理学
    • 35 篇 统计学(可授理学、...
    • 22 篇 系统科学
    • 8 篇 化学
  • 57 篇 管理学
    • 30 篇 管理科学与工程(可...
    • 28 篇 图书情报与档案管...
    • 11 篇 工商管理
  • 19 篇 法学
    • 19 篇 社会学
  • 19 篇 医学
    • 19 篇 临床医学
    • 17 篇 基础医学(可授医学...
    • 17 篇 药学(可授医学、理...
  • 9 篇 农学
    • 8 篇 作物学
  • 4 篇 教育学
  • 1 篇 经济学
  • 1 篇 军事学

主题

  • 19 篇 reinforcement le...
  • 19 篇 three-dimensiona...
  • 19 篇 planning
  • 18 篇 robot sensing sy...
  • 16 篇 robots
  • 15 篇 training
  • 14 篇 object detection
  • 14 篇 semantics
  • 13 篇 trajectory
  • 12 篇 semantic segment...
  • 12 篇 laser radar
  • 11 篇 uncertainty
  • 11 篇 accuracy
  • 10 篇 point cloud comp...
  • 9 篇 optimization
  • 9 篇 data models
  • 8 篇 cameras
  • 8 篇 computational mo...
  • 8 篇 feature extracti...
  • 8 篇 geometry

机构

  • 44 篇 machine learning...
  • 36 篇 lamarr institute...
  • 27 篇 center for robot...
  • 25 篇 robotics institu...
  • 23 篇 machine learning...
  • 17 篇 center for neuro...
  • 13 篇 machine learning...
  • 12 篇 robotics institu...
  • 11 篇 machine learning...
  • 10 篇 machine learning...
  • 10 篇 robotics institu...
  • 10 篇 neuroscience and...
  • 8 篇 machine learning...
  • 8 篇 learning and int...
  • 8 篇 australian insti...
  • 8 篇 institute for sy...
  • 7 篇 machine learning...
  • 7 篇 learning and int...
  • 7 篇 dahlem center fo...
  • 6 篇 the lamarr insti...

作者

  • 45 篇 toussaint marc
  • 33 篇 marc toussaint
  • 27 篇 schneider jeff
  • 25 篇 behnke sven
  • 22 篇 stachniss cyrill
  • 16 篇 behley jens
  • 15 篇 cyrill stachniss
  • 12 篇 mainprice jim
  • 11 篇 jeff schneider
  • 10 篇 carneiro gustavo
  • 9 篇 maicas gabriel
  • 9 篇 jens behley
  • 9 篇 bennewitz maren
  • 9 篇 landgraf tim
  • 8 篇 neiswanger willi...
  • 8 篇 goehring daniel
  • 8 篇 pucci daniele
  • 8 篇 mehta viraj
  • 7 篇 char ian
  • 7 篇 sven behnke

语言

  • 418 篇 英文
  • 32 篇 其他
检索条件"机构=Robotics and Machine Learning"
450 条 记 录,以下是1-10 订阅
排序:
TTAPose: Test-time Adaptation for Unseen Object Pose Estimation
收藏 引用
IEEE robotics and Automation Letters 2025年 第6期10卷 6063-6070页
作者: Huang, Junwen Yu, Peter KT Navab, Nassir Busam, Benjamin Technical University of Munich Germany Munich Center for Machine Learning Germany XYZ Robotics United States
Recent advances in the field of 6D pose estimation of unseen objects not present during training are promising, however, the performance gap between these general methods and object-specific methods remains significan... 详细信息
来源: 评论
Safe Multi-Agent Reinforcement learning for Behavior-Based Cooperative Navigation
收藏 引用
IEEE robotics and Automation Letters 2025年 第6期10卷 6256-6263页
作者: Dawood, Murad Pan, Sicong Dengler, Nils Zhou, Siqi Schoellig, Angela P. Bennewitz, Maren University of Bonn Humanoid Robots Lab Germany Center for Robotics Lamarr Institute for Machine Learning and Artificial Intelligence Bonn Germany The Technical University of Munich Learning Systems and Robotics lab Germany
In this paper, we address the problem of behavior-based cooperative navigation of mobile robots using safe multi-agent reinforcement learning (MARL). Our work is the first to focus on cooperative navigation without in... 详细信息
来源: 评论
Person Segmentation and Action Classification for Multi-Channel Hemisphere Field of View LiDAR Sensors
Person Segmentation and Action Classification for Multi-Chan...
收藏 引用
2025 IEEE/SICE International Symposium on System Integration, SII 2025
作者: Seliunina, Svetlana Otelepko, Artem Memmesheimer, Raphael Behnke, Sven University of Bonn Autonomous Intelligent Systems Group Computer Science Institute VI - Intelligent Systems and Robotics Lamarr Institute for Machine Learning and Artificial Intelligence Center for Robotics Germany
Robots need to perceive persons in their surroundings for safety and to interact with them. In this paper, we present a person segmentation and action classification approach that operates on 3D scans of hemisphere fi... 详细信息
来源: 评论
Epipolar Attention Field Transformers for Bird's Eye View Semantic Segmentation
Epipolar Attention Field Transformers for Bird's Eye View Se...
收藏 引用
2025 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2025
作者: Witte, Christian Behley, Jens Stachniss, Cyrill Raaijmakers, Marvin Cariad Se Germany University of Bonn Center for Robotics Germany Lamarr Institute for Machine Learning and Artificial Intelligence Germany
Spatial understanding of the semantics of the surroundings is a key capability needed by autonomous cars to enable safe driving decisions. Recently, purely vision-based solutions have gained increasing research intere... 详细信息
来源: 评论
RoboCup@Home 2024 OPL Winner NimbRo: Anthropomorphic Service Robots Using Foundation Models for Perception and Planning
RoboCup@Home 2024 OPL Winner NimbRo: Anthropomorphic Service...
收藏 引用
27th RoboCup International Symposium, 2024
作者: Memmesheimer, Raphael Nogga, Jan Pätzold, Bastian Kruzhkov, Evgenii Bultmann, Simon Schreiber, Michael Bode, Jonas Karacora, Bertan Park, Juhui Savinykh, Alena Behnke, Sven Autonomous Intelligent Systems Computer Science Institute VI Lamarr Institute for Machine Learning and Artificial Intelligence and Center for Robotics University of Bonn Bonn Germany
We present the approaches and contributions of the winning team NimbRo@Home at the RoboCup@Home 2024 competition in the Open Platform League held in Eindhoven, NL. Further, we describe our hardware setup and give an o... 详细信息
来源: 评论
Steering Dialogue Dynamics for Robustness against Multi-turn Jailbreaking Attacks
arXiv
收藏 引用
arXiv 2025年
作者: Hu, Hanjiang Robey, Alexander Liu, Changliu Robotics Institute Machine Learning Department Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States Robotics Institute Carnegie Mellon University United States
Large language models (LLMs) are highly vulnerable to jailbreaking attacks, wherein adversarial prompts are designed to elicit harmful responses. While existing defenses effectively mitigate single-turn attacks by det... 详细信息
来源: 评论
GCE-Pose: Global Context Enhancement for Category-level Object Pose Estimation
arXiv
收藏 引用
arXiv 2025年
作者: Li, Weihang Xu, Hongli Huang, Junwen Jung, Hyunjun Yu, Peter K.T. Navab, Nassir Busam, Benjamin Technical University of Munich Germany Munich Center for Machine Learning Germany XYZ Robotics
A key challenge in model-free category-level pose estimation is the extraction of contextual object features that generalize across varying instances within a specific category. Recent approaches leverage foundational... 详细信息
来源: 评论
PlaySlot: learning Inverse Latent Dynamics for Controllable Object-Centric Video Prediction and Planning
arXiv
收藏 引用
arXiv 2025年
作者: Villar-Corrales, Angel Behnke, Sven Computer Science Institute VI – Intelligent Systems and Robotics Center for Robotics The Lamarr Institute for Machine Learning and Artificial Intelligence Germany
Predicting future scene representations is a crucial task for enabling robots to understand and interact with the environment. However, most existing methods rely on video sequences and simulations with precise action... 详细信息
来源: 评论
3D Hierarchical Panoptic Segmentation in Real Orchard Environments Across Different Sensors
arXiv
收藏 引用
arXiv 2025年
作者: Sodano, Matteo Magistri, Federico Marks, Elias Hosn, Fares Zurbayev, Aibek Marcuzzi, Rodrigo Malladi, Meher V.R. Behley, Jens Stachniss, Cyrill Center for Robotics University of Bonn Germany Lamarr Institute for Machine Learning and Artificial Intelligence Germany
Crop yield estimation is a relevant problem in agriculture, because an accurate crop yield estimate can support farmers’ decisions on harvesting or precision intervention. Robots can help to automate this process. To... 详细信息
来源: 评论
Towards Generating Realistic 3D Semantic Training Data for Autonomous Driving
arXiv
收藏 引用
arXiv 2025年
作者: Nunes, Lucas Marcuzzi, Rodrigo Behley, Jens Stachniss, Cyrill Center for Robotics University of Bonn Germany Lamarr Institute for Machine Learning and Artificial Intelligence Germany
Semantic scene understanding is crucial for robotics and computer vision applications. In autonomous driving, 3D semantic segmentation plays an important role for enabling safe navigation. Despite significant advances... 详细信息
来源: 评论