咨询与建议

限定检索结果

文献类型

  • 250 篇 会议
  • 200 篇 期刊文献

馆藏范围

  • 450 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 294 篇 工学
    • 200 篇 计算机科学与技术...
    • 183 篇 软件工程
    • 121 篇 控制科学与工程
    • 49 篇 生物工程
    • 42 篇 生物医学工程(可授...
    • 39 篇 信息与通信工程
    • 32 篇 光学工程
    • 30 篇 机械工程
    • 20 篇 仪器科学与技术
    • 18 篇 电气工程
    • 16 篇 电子科学与技术(可...
    • 13 篇 力学(可授工学、理...
    • 11 篇 交通运输工程
    • 10 篇 建筑学
    • 10 篇 土木工程
    • 6 篇 化学工程与技术
  • 159 篇 理学
    • 80 篇 数学
    • 60 篇 生物学
    • 36 篇 物理学
    • 35 篇 统计学(可授理学、...
    • 22 篇 系统科学
    • 8 篇 化学
  • 57 篇 管理学
    • 30 篇 管理科学与工程(可...
    • 28 篇 图书情报与档案管...
    • 11 篇 工商管理
  • 19 篇 法学
    • 19 篇 社会学
  • 19 篇 医学
    • 19 篇 临床医学
    • 17 篇 基础医学(可授医学...
    • 17 篇 药学(可授医学、理...
  • 9 篇 农学
    • 8 篇 作物学
  • 4 篇 教育学
  • 1 篇 经济学
  • 1 篇 军事学

主题

  • 19 篇 reinforcement le...
  • 19 篇 three-dimensiona...
  • 19 篇 planning
  • 18 篇 robot sensing sy...
  • 16 篇 robots
  • 15 篇 training
  • 14 篇 object detection
  • 14 篇 semantics
  • 13 篇 trajectory
  • 12 篇 semantic segment...
  • 12 篇 laser radar
  • 11 篇 uncertainty
  • 11 篇 accuracy
  • 10 篇 point cloud comp...
  • 9 篇 optimization
  • 9 篇 data models
  • 8 篇 cameras
  • 8 篇 computational mo...
  • 8 篇 feature extracti...
  • 8 篇 geometry

机构

  • 44 篇 machine learning...
  • 36 篇 lamarr institute...
  • 27 篇 center for robot...
  • 25 篇 robotics institu...
  • 23 篇 machine learning...
  • 17 篇 center for neuro...
  • 13 篇 machine learning...
  • 12 篇 robotics institu...
  • 11 篇 machine learning...
  • 10 篇 machine learning...
  • 10 篇 robotics institu...
  • 10 篇 neuroscience and...
  • 8 篇 machine learning...
  • 8 篇 learning and int...
  • 8 篇 australian insti...
  • 8 篇 institute for sy...
  • 7 篇 machine learning...
  • 7 篇 learning and int...
  • 7 篇 dahlem center fo...
  • 6 篇 the lamarr insti...

作者

  • 45 篇 toussaint marc
  • 33 篇 marc toussaint
  • 27 篇 schneider jeff
  • 25 篇 behnke sven
  • 22 篇 stachniss cyrill
  • 16 篇 behley jens
  • 15 篇 cyrill stachniss
  • 12 篇 mainprice jim
  • 11 篇 jeff schneider
  • 10 篇 carneiro gustavo
  • 9 篇 maicas gabriel
  • 9 篇 jens behley
  • 9 篇 bennewitz maren
  • 9 篇 landgraf tim
  • 8 篇 neiswanger willi...
  • 8 篇 goehring daniel
  • 8 篇 pucci daniele
  • 8 篇 mehta viraj
  • 7 篇 char ian
  • 7 篇 sven behnke

语言

  • 418 篇 英文
  • 32 篇 其他
检索条件"机构=Robotics and Machine Learning"
450 条 记 录,以下是91-100 订阅
排序:
Smartphone interruptibility using density-weighted uncertainty sampling with reinforcement learning
Smartphone interruptibility using density-weighted uncertain...
收藏 引用
10th International Conference on machine learning and Applications, ICMLA 2011
作者: Fisher, Robert Simmons, Reid Machine Learning Department Carnegie Mellon University Pittsburgh PA 15213-3815 United States Robotics Institute Carnegie Mellon University Pittsburgh PA 15213-3815 United States
We present the In-Context application for smart-phones, which combines signal processing, active learning, and reinforcement learning to autonomously create a personalized model of interruptibility for incoming phone ... 详细信息
来源: 评论
Integrated motor control, planning, grasping and high-level reasoning in a blocks world using probabilistic inference
Integrated motor control, planning, grasping and high-level ...
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Marc Toussaint Nils Plath Tobias Lang Nikolay Jetchev Machine Learning and Robotics Group Technical University Berlin Berlin Germany
A new approach to planning and goal-directed behavior has recently been proposed using probabilistic inference in a graphical model that represents states, actions, constraints and goals of the future to infer appropr... 详细信息
来源: 评论
Temporal collaborative filtering with Bayesian probabilistic tensor factorization
Temporal collaborative filtering with Bayesian probabilistic...
收藏 引用
10th SIAM International Conference on Data Mining, SDM 2010
作者: Xiong, Liang Chen, Xi Huang, Tzu-Kuo Schneider, Jeff Carbonell, Jaime G. Machine Learning Department Carnegie Mellon University United States Robotics Institute Carnegie Mellon University United States Language Technology Institute Carnegie Mellon University United States
Real-world relational data are seldom stationary, yet traditional collaborative filtering algorithms generally rely on this assumption. Motivated by our sales prediction problem, we propose a factor-based algorithm th... 详细信息
来源: 评论
Source-level analysis of brain activity in the process of learning and retrieving new information  5
Source-level analysis of brain activity in the process of le...
收藏 引用
5th Scientific School on Dynamics of Complex Networks and their Applications, DCNA 2021
作者: Makarov, Vladimir Grubov, Vadim Kurkin, Semen Smirnov, Nikita Neuroscience and Cognitive Technology Laboratory Center for Technologies in Robotics and Mechatronics Components Innopolis University Innopolis Russia Center for Neurotechnology and Machine Learning Immanuel Kant Baltic Federal University Kaliningrad Russia
In this paper, we discovered the increase in EEG power in the theta frequency range in the occipital cortex during a visual analysis of new information and the power decrease in the alpha range in the temporal lobe du... 详细信息
来源: 评论
Effect of prehistory on the ambiguous stimuli processing in the human brain  5
Effect of prehistory on the ambiguous stimuli processing in ...
收藏 引用
5th Scientific School on Dynamics of Complex Networks and their Applications, DCNA 2021
作者: Kuc, Alexander Neuroscience and Cognitive Technology Lab Center for Technologies in Robotics and Mechatronics Components Innopolis University Innopolis Russia Center for Neurotechnology and Machine Learning Immanuel Kant Baltic Federal University Kaliningrad Russia
To model the picture of the external environment, the brain uses data coming from the sensory system. However, it is believed that the brain’s representation of the external environment is formed not only by sensory ... 详细信息
来源: 评论
Quasi-movements as an intermediate type of motion  5
Quasi-movements as an intermediate type of motion
收藏 引用
5th Scientific School on Dynamics of Complex Networks and their Applications, DCNA 2021
作者: Smirnov, Nikita M. Kurkin, Semen Neuroscience and Cognitive Technology Laboratory Center for Technologies in Robotics and Mechatronics Components Innopolis University Innopolis Russia Center for Neurotechnology and Machine Learning Immanuel Kant Baltic Federal University Kaliningrad Russia
This paper discusses the three distinct types of motor activity, namely quasi, real, and imagery. Quasi-motion is voluntary movements that are minimized to the point that finally become undetectable by objective measu... 详细信息
来源: 评论
PID-inspired inductive biases for deep reinforcement learning in partially observable control tasks  23
PID-inspired inductive biases for deep reinforcement learnin...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Ian Char Jeff Schneider Machine Learning Department Carnegie Mellon University Pittsburgh PA Machine Learning Department Robotics Institute Carnegie Mellon University Pittsburgh PA
Deep reinforcement learning (RL) has shown immense potential for learning to control systems through data alone. However, one challenge deep RL faces is that the full state of the system is often not observable. When ...
来源: 评论
Biomarkers of brain activity for the performance evaluation in the process of solving cognitive tasks  5
Biomarkers of brain activity for the performance evaluation ...
收藏 引用
5th Scientific School on Dynamics of Complex Networks and their Applications, DCNA 2021
作者: Badarin, Artem Smirnov, Nikita Kurkin, Semen Neuroscience and Cognitive Technology Laboratory Center for Technologies in Robotics and Mechatronics Components Innopolis University Innopolis Russia Center for Neurotechnology and Machine Learning Immanuel Kant Baltic Federal University Kaliningrad Russia
In this paper, we analyze the brain activity during the execution by the subject of simple cognitive tasks associated with visual attention and symbol perception. We obtain biomarkers of brain activity in the process ... 详细信息
来源: 评论
learning Demands for Ride-pooling Services: A Case Study in Berlin
Learning Demands for Ride-pooling Services: A Case Study in ...
收藏 引用
IEEE Symposium on Intelligent Vehicle
作者: Martin Aleksandrov Dahlem Center for Machine Learning and Robotics Freie Universitä Berlin Berlin Germany
We design a survey-and-scenario-based method for investigating the demand of real people for ride-pooling services in Berlin. We deploy it among public transport users to study where, why, how, and when they would use... 详细信息
来源: 评论
Comparison on brain activity for mechanical imagery and execution: a brief review  5
Comparison on brain activity for mechanical imagery and exec...
收藏 引用
5th Scientific School on Dynamics of Complex Networks and their Applications, DCNA 2021
作者: Chepurova, Alla Kurkin, Semen Neuroscience and Cognitive Technology Laboratory Center for Technologies in Robotics and Mechatronics Components Innopolis University Innopolis Russia Center for Neurotechnology and Machine Learning Immanuel Kant Baltic Federal University Kaliningrad Russia
With this review we summarize the current state of scientific studies in the field of MI (motor imagery) and ME (motor execution). We composed brain map and description which correlate different brain areas with type ... 详细信息
来源: 评论