咨询与建议

限定检索结果

文献类型

  • 250 篇 会议
  • 200 篇 期刊文献

馆藏范围

  • 450 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 294 篇 工学
    • 200 篇 计算机科学与技术...
    • 183 篇 软件工程
    • 121 篇 控制科学与工程
    • 49 篇 生物工程
    • 42 篇 生物医学工程(可授...
    • 39 篇 信息与通信工程
    • 32 篇 光学工程
    • 30 篇 机械工程
    • 20 篇 仪器科学与技术
    • 18 篇 电气工程
    • 16 篇 电子科学与技术(可...
    • 13 篇 力学(可授工学、理...
    • 11 篇 交通运输工程
    • 10 篇 建筑学
    • 10 篇 土木工程
    • 6 篇 化学工程与技术
  • 159 篇 理学
    • 80 篇 数学
    • 60 篇 生物学
    • 36 篇 物理学
    • 35 篇 统计学(可授理学、...
    • 22 篇 系统科学
    • 8 篇 化学
  • 57 篇 管理学
    • 30 篇 管理科学与工程(可...
    • 28 篇 图书情报与档案管...
    • 11 篇 工商管理
  • 19 篇 法学
    • 19 篇 社会学
  • 19 篇 医学
    • 19 篇 临床医学
    • 17 篇 基础医学(可授医学...
    • 17 篇 药学(可授医学、理...
  • 9 篇 农学
    • 8 篇 作物学
  • 4 篇 教育学
  • 1 篇 经济学
  • 1 篇 军事学

主题

  • 19 篇 reinforcement le...
  • 19 篇 three-dimensiona...
  • 19 篇 planning
  • 18 篇 robot sensing sy...
  • 16 篇 robots
  • 15 篇 training
  • 14 篇 object detection
  • 14 篇 semantics
  • 13 篇 trajectory
  • 12 篇 semantic segment...
  • 12 篇 laser radar
  • 11 篇 uncertainty
  • 11 篇 accuracy
  • 10 篇 point cloud comp...
  • 9 篇 optimization
  • 9 篇 data models
  • 8 篇 cameras
  • 8 篇 computational mo...
  • 8 篇 feature extracti...
  • 8 篇 geometry

机构

  • 44 篇 machine learning...
  • 36 篇 lamarr institute...
  • 27 篇 center for robot...
  • 25 篇 robotics institu...
  • 23 篇 machine learning...
  • 17 篇 center for neuro...
  • 13 篇 machine learning...
  • 12 篇 robotics institu...
  • 11 篇 machine learning...
  • 10 篇 machine learning...
  • 10 篇 robotics institu...
  • 10 篇 neuroscience and...
  • 8 篇 machine learning...
  • 8 篇 learning and int...
  • 8 篇 australian insti...
  • 8 篇 institute for sy...
  • 7 篇 machine learning...
  • 7 篇 learning and int...
  • 7 篇 dahlem center fo...
  • 6 篇 the lamarr insti...

作者

  • 45 篇 toussaint marc
  • 33 篇 marc toussaint
  • 27 篇 schneider jeff
  • 25 篇 behnke sven
  • 22 篇 stachniss cyrill
  • 16 篇 behley jens
  • 15 篇 cyrill stachniss
  • 12 篇 mainprice jim
  • 11 篇 jeff schneider
  • 10 篇 carneiro gustavo
  • 9 篇 maicas gabriel
  • 9 篇 jens behley
  • 9 篇 bennewitz maren
  • 9 篇 landgraf tim
  • 8 篇 neiswanger willi...
  • 8 篇 goehring daniel
  • 8 篇 pucci daniele
  • 8 篇 mehta viraj
  • 7 篇 char ian
  • 7 篇 sven behnke

语言

  • 418 篇 英文
  • 32 篇 其他
检索条件"机构=Robotics and Machine Learning"
450 条 记 录,以下是31-40 订阅
排序:
Constrained Bayesian optimization of combined interaction force/task space controllers for manipulations
Constrained Bayesian optimization of combined interaction fo...
收藏 引用
2017 IEEE International Conference on robotics and Automation, ICRA 2017
作者: Dries, Danny Englert, Peter Toussaint, Marc Machine Learning and Robotics Lab University of Stuttgart Germany
In this paper, we address the problem of how a robot can optimize parameters of combined interaction force/task space controllers under a success constraint in an active way. To enable the robot to explore its environ... 详细信息
来源: 评论
Efficient Over-parameterized Matrix Sensing from Noisy Measurements via Alternating Preconditioned Gradient Descent
arXiv
收藏 引用
arXiv 2025年
作者: Liu, Zhiyu Han, Zhi Tang, Yandong Zhang, Hai Tang, Shaojie Wang, Yao State Key Laboratory of Robotics Shenyang Institute of Automation Chinese Academy of Sciences Shenyang110016 China University of Chinese Academy of Sciences Beijing100049 China Department of Statistics Northwest University Xi’an710000 China Department of Management Science and Systems State University of New York Buffalo United States Center for Intelligent Decision-making and Machine Learning School of Management Xi’an Jiaotong University Xi’an710049 China
We consider the noisy matrix sensing problem in the over-parameterization setting, where the estimated rank r is larger than the true rank r★. Specifically, our main objective is to recover a matrix X★ ∈ Rn1×n... 详细信息
来源: 评论
Model-based relational RL when object existence is partially observable  31
Model-based relational RL when object existence is partially...
收藏 引用
31st International Conference on machine learning, ICML 2014
作者: Vien, Ngo Anh Toussaint, Marc Machine Learning and Robotics Lab University of Stuttgart 70569 Germany
We consider learning and planning in relational MDPs when object existence is uncertain and new objects may appear or disappear depending on previous actions or properties of other ob-jects. Optimal policies actively ... 详细信息
来源: 评论
Hierarchical Monte-Carlo planning  29
Hierarchical Monte-Carlo planning
收藏 引用
29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015
作者: Vien, Ngo Anh Toussaint, Marc Machine Learning and Robotics Lab. University of Stuttgart Germany
Monte-Carlo Tree Search, especially UCT and its POMDP version POMCP, have demonstrated excellent performance on many problems. However, to efficiently scale to large domains one should also exploit hierarchical struct... 详细信息
来源: 评论
When explanations lie: Why many modified BP attributions fail  37
When explanations lie: Why many modified BP attributions fai...
收藏 引用
37th International Conference on machine learning, ICML 2020
作者: Sixt, Leon Granz, Maximilian Landgraf, Tim Dahlem Center of Machine Learning and Robotics Freie Universität Berlin Germany
Attribution methods aim to explain a neural network's prediction by highlighting the most relevant image areas. A popular approach is to backpropagate (BP) a custom relevance score using modified rules, rather tha... 详细信息
来源: 评论
Automated Multilingual Detection of Pro-Kremlin Propaganda in Newspapers and Telegram Posts
收藏 引用
Datenbank-Spektrum 2023年 第1期23卷 5-14页
作者: Solopova, Veronika Popescu, Oana-Iuliana Benzmüller, Christoph Landgraf, Tim Dahlem Center for Machine Learning and Robotics Freie Universität Berlin Berlin Germany German Aerospace Center Jena Germany
The full-scale conflict between the Russian Federation and Ukraine generated an unprecedented amount of news articles and social media data reflecting opposing ideologies and narratives. These polarized campaigns have... 详细信息
来源: 评论
Subspace Clustering
收藏 引用
IEEE SIGNAL PROCESSING MAGAZINE 2011年 第2期28卷 52-68页
作者: Vidal, Rene He was coeditor of the book Dynamical Vision and has coauthored more than 100 articles in biomedical image analysis computer vision machine learning hybrid systems and robotics.
The past few years have witnessed an explosion in the availability of data from multiple sources and modalities. For example, millions of cameras have been installed in buildings, streets, airports, and cities around ... 详细信息
来源: 评论
Task space retrieval using inverse feedback control
Task space retrieval using inverse feedback control
收藏 引用
28th International Conference on machine learning, ICML 2011
作者: Jetchev, Nikolay Toussaint, Marc Machine Learning and Robotics Lab. FU Berlin Arnimallee 7 14195 Berlin Germany
learning complex skills by repeating and generalizing expert behavior is a fundamental problem in robotics. A common approach is learning from demonstration: given examples of correct motions, learn a policy mapping s... 详细信息
来源: 评论
Autonomous Car Navigation Using Vector Fields
Autonomous Car Navigation Using Vector Fields
收藏 引用
2018 IEEE Intelligent Vehicles Symposium, IV 2018
作者: Boroujeni, Zahra Mohammadi, Mostafa Neumann, Daniel Goehring, Daniel Rojas, Raul Dahlem Center for Machine Learning and Robotics Computer Science Institute Freie Universität Berlin Germany
In this paper, a method based on vector fields for the navigation of autonomous cars is developed. Vector fields-used to generate the desired heading angle of a vehicle toward a specified road lane - attract the car t... 详细信息
来源: 评论
Probabilistic backward and forward reasoning in stochastic relational worlds
Probabilistic backward and forward reasoning in stochastic r...
收藏 引用
27th International Conference on machine learning, ICML 2010
作者: Lang, Tobias Toussaint, Marc Machine Learning and Robotics Group TU Berlin Franklinstraße 28/29 10587 Berlin Germany
Inference in graphical models has emerged as a promising technique for planning. A recent approach to decision-theoretic planning in relational domains uses forward inference in dynamic Bayesian networks compiled from... 详细信息
来源: 评论