While traditional Convolutional Neural Network(CNN)-based semantic segmentation methods have proven effective,they often encounter significant computational challenges due to the requirement for dense pixel-level pred...
详细信息
While traditional Convolutional Neural Network(CNN)-based semantic segmentation methods have proven effective,they often encounter significant computational challenges due to the requirement for dense pixel-level predictions,which complicates real-time *** address this,we introduce an advanced real-time semantic segmentation strategy specifically designed for autonomous driving,utilizing the capabilities of Visual *** leveraging the self-attention mechanism inherent in Visual Transformers,our method enhances global contextual awareness,refining the representation of each pixel in relation to the overall *** enhancement is critical for quickly and accurately interpreting the complex elements within driving sce-narios—a fundamental need for autonomous *** experiments conducted on the DriveSeg autonomous driving dataset indicate that our model surpasses traditional segmentation methods,achieving a significant 4.5%improvement in Mean Intersection over Union(mIoU)while maintaining real-time *** paper not only underscores the potential for optimized semantic segmentation but also establishes a promising direction for real-time processing in autonomous navigation *** work will focus on integrating this technique with other perception modules in autonomous driving to further improve the robustness and efficiency of self-driving perception frameworks,thereby opening new pathways for research and practical applications in scenarios requiring rapid and precise decision-making *** experimentation and adaptation of this model could lead to broader implications for the fields of machine learning and computer vision,particularly in enhancing the interaction between automated systems and their dynamic environments.
As a popular strategy to tackle concept drift, chunk-based ensemble method adapts a new concept by adjusting the weights of historical classifiers. However, most previous approaches normally evaluate the historical cl...
详细信息
The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries an...
详细信息
The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries and other ***,it is important to construct a digital twin ***,existing methods do not take full advantage of the potential properties of variables,which results in poor predicted *** this paper,we propose the Adaptive Fused Spatial-Temporal Graph Convolutional Network(AFSTGCN).First,to address the problem of the unknown spatial-temporal structure,we construct the Adaptive Fused Spatial-Temporal Graph(AFSTG)***,we fuse the spatial-temporal graph based on the interrelationship of spatial ***,we construct the adaptive adjacency matrix of the spatial-temporal graph using node embedding ***,to overcome the insufficient extraction of disordered correlation features,we construct the Adaptive Fused Spatial-Temporal Graph Convolutional(AFSTGC)*** module forces the reordering of disordered temporal,spatial and spatial-temporal dependencies into rule-like *** dynamically and synchronously acquires potential temporal,spatial and spatial-temporal correlations,thereby fully extracting rich hierarchical feature information to enhance the predicted *** on different types of MTS datasets demonstrate that the model achieves state-of-the-art single-step and multi-step performance compared with eight other deep learning models.
An end-to-end unsupervised domain adaptation method for hyperspectral image (HSI) classification based on a graph dual adversarial network is proposed in this article. First, in order to extract the domain-invariant f...
详细信息
Dear Editor,This letter is concerned with prescribed-time Nash equilibrium(PTNE)seeking problem in a pursuit-evasion game(PEG)involving agents with second-order *** order to achieve the prior-given and user-defined co...
详细信息
Dear Editor,This letter is concerned with prescribed-time Nash equilibrium(PTNE)seeking problem in a pursuit-evasion game(PEG)involving agents with second-order *** order to achieve the prior-given and user-defined convergence time for the PEG,a PTNE seeking algorithm has been developed to facilitate collaboration among multiple pursuers for capturing the evader without the need for any global ***,it is theoretically proved that the prescribedtime convergence of the designed algorithm for achieving Nash equilibrium of ***,the effectiveness of the PTNE method was validated by numerical simulation results.A PEG consists of two groups of agents:evaders and *** pursuers aim to capture the evaders through cooperative efforts,while the evaders strive to evade *** is a classic noncooperative *** has attracted plenty of attention due to its wide application scenarios,such as smart grids[1],formation control[2],[3],and spacecraft rendezvous[4].It is noteworthy that most previous research on seeking the Nash equilibrium of the game,where no agent has an incentive to change its actions,has focused on asymptotic and exponential convergence[5]-[7].
Lithium-ion batteries have increasingly become a primary energy source in Electric Vehicles (EVs), power grid energy storage, aerospace, and other fields. Accurate State of Charge (SOC) estimation is crucial for the s...
详细信息
Recent incidents have shown the attacks against Industrial control System (ICS), which may result in failure or even catastrophe and prompt the studies of defense. Existing security systems are mostly based on network...
详细信息
INTRODUCTION Store signboards provide important information in street view images,andcharacter recognition in natural scenes is an important research direction in computer *** view store signboard character recognitio...
INTRODUCTION Store signboards provide important information in street view images,andcharacter recognition in natural scenes is an important research direction in computer *** view store signboard character recognition technology,acombination of the two,
The third generation of neural networks is called spiking neural networks. Spiking neural networks can not only answer all the problems that can be solved by common neural networks, they can also be computationally mo...
详细信息
The neural network methods in solving differential equations have significant research importance and promising application prospects. Aimed at the time-fractional Huxley (TFH) equation, we propose a novel fractional ...
详细信息
暂无评论