Code review is a critical process in software development, contributing to the overall quality of the product by identifying errors early. A key aspect of this process is the selection of appropriate reviewers to scru...
详细信息
Code review is a critical process in software development, contributing to the overall quality of the product by identifying errors early. A key aspect of this process is the selection of appropriate reviewers to scrutinize changes made to source code. However, in large-scale open-source projects, selecting the most suitable reviewers for a specific change can be a challenging task. To address this, we introduce the Code Context Based Reviewer Recommendation (CCB-RR), a model that leverages information from changesets to recommend the most suitable reviewers. The model takes into consideration the paths of modified files and the context derived from the changesets, including their titles and descriptions. Additionally, CCB-RR employs KeyBERT to extract the most relevant keywords and compare the semantic similarity across changesets. The model integrates the paths of modified files, keyword information, and the context of code changes to form a comprehensive picture of the changeset. We conducted extensive experiments on four open-source projects, demonstrating the effectiveness of CCB-RR. The model achieved a Top-1 accuracy of 60%, 55%, 51%, and 45% on the Android, OpenStack, QT, and LibreOffice projects respectively. For Mean Reciprocal Rank (MRR), CCB achieved 71%, 62%, 52%, and 68% on the same projects respectively, thereby highlighting its potential for practical application in code reviewer recommendation.
Images captured under severe weather conditions, such as haze and fog, suffer from image quality degradation caused by atmospheric particle diffusion. This degradation manifests as color fading, reduced contrast, and ...
详细信息
A large number of Web APIs have been released as services in mobile communications,but the service provided by a single Web API is usually *** enrich the services in mobile communications,developers have combined Web ...
详细信息
A large number of Web APIs have been released as services in mobile communications,but the service provided by a single Web API is usually *** enrich the services in mobile communications,developers have combined Web APIs and developed a new service,which is known as a *** emergence of mashups greatly increases the number of services in mobile communications,especially in mobile networks and the Internet-of-Things(IoT),and has encouraged companies and individuals to develop even more mashups,which has led to the dramatic increase in the number of *** a trend brings with it big data,such as the massive text data from the mashups themselves and continually-generated usage ***,the question of how to determine the most suitable mashups from big data has become a challenging *** this paper,we propose a mashup recommendation framework from big data in mobile networks and the *** proposed framework is driven by machine learning techniques,including neural embedding,clustering,and matrix *** employ neural embedding to learn the distributed representation of mashups and propose to use cluster analysis to learn the relationship among the *** also develop a novel Joint Matrix Factorization(JMF)model to complete the mashup recommendation task,where we design a new objective function and an optimization *** then crawl through a real-world large mashup dataset and perform *** experimental results demonstrate that our framework achieves high accuracy in mashup recommendation and performs better than all compared baselines.
Apricot detection is a prerequisite for counting and harvesting tasks. Existing algorithms face challenges in adapting to the impacts of complex environmental factors such as lighting variations, shadows, dense foliag...
详细信息
Over the years, numerous optimization problems have been addressed utilizing meta-heuristic algorithms. Continuing initiatives have always been to create and develop new, practical algorithms. This work proposes a nov...
详细信息
Safety equipment detection is an important application of object detection, receiving widespread attention in fields such as smart construction sites and video surveillance. Significant progress has been made in objec...
详细信息
Multi-hop reasoning for incomplete Knowledge Graphs(KGs)demonstrates excellent interpretability with decent *** Learning(RL)based approaches formulate multi-hop reasoning as a typical sequential decision *** intractab...
详细信息
Multi-hop reasoning for incomplete Knowledge Graphs(KGs)demonstrates excellent interpretability with decent *** Learning(RL)based approaches formulate multi-hop reasoning as a typical sequential decision *** intractable shortcoming of multi-hop reasoning with RL is that sparse reward signals make performance *** mainstream methods apply heuristic reward functions to counter this ***,the inaccurate rewards caused by heuristic functions guide the agent to improper inference paths and unrelated object *** this end,we propose a novel adaptive Inverse Reinforcement Learning(IRL)framework for multi-hop reasoning,called AInvR.(1)To counter the missing and spurious paths,we replace the heuristic rule rewards with an adaptive rule reward learning mechanism based on agent’s inference trajectories;(2)to alleviate the impact of over-rewarded object entities misled by inaccurate reward shaping and rules,we propose an adaptive negative hit reward learning mechanism based on agent’s sampling strategy;(3)to further explore diverse paths and mitigate the influence of missing facts,we design a reward dropout mechanism to randomly mask and perturb reward parameters for the reward learning *** results on several benchmark knowledge graphs demonstrate that our method is more effective than existing multi-hop approaches.
PROBLEM Recent years have witnessed the rapid progress of self-supervised language models (LMs)[1],especially large language models (LLMs)[2].LLMs not only achieved state-of-the-art performance on many natural languag...
PROBLEM Recent years have witnessed the rapid progress of self-supervised language models (LMs)[1],especially large language models (LLMs)[2].LLMs not only achieved state-of-the-art performance on many natural language processing tasks,but also captured widespread attention from the public due to their great potential in a variety of real-world applications (***,search engines,writing assistants,etc.)through providing general-purpose intelligent services.A few of the LLMs are becoming foundation models,an analogy to infrastructure,that empower hundreds of downstream applications.
Recent advances in wireless sensor networks (WSNs) have brought the sensor based monitoring developments to the surface in many applications. In such a scenario, the security of communication is a major challenge in t...
详细信息
As an important task in emotion analysis, Multimodal Emotion-Cause Pair Extraction in conversations (MECPE) aims to extract all the emotion-cause utterance pairs from a conversation. However, there are two shortcoming...
详细信息
As an important task in emotion analysis, Multimodal Emotion-Cause Pair Extraction in conversations (MECPE) aims to extract all the emotion-cause utterance pairs from a conversation. However, there are two shortcomings in the MECPE task: 1) it ignores emotion utterances whose causes cannot be located in the conversation but require contextualized inference;2) it fails to locate the exact causes that occur in vision or audio modalities beyond text. To address these issues, in this paper, we introduce a new task named Multimodal Emotion-Cause Pair Generation in Conversations (MECPG), which aims to identify the emotion utterances with their emotion categories and generate their corresponding causes in a conversation. To tackle the MECPG task, we construct a dataset based on a benchmark corpus for MECPE. We further propose a generative framework named MONICA, which jointly performs emotion recognition and emotion cause generation with a sequence-to-sequence model. Experiments on our annotated dataset show the superiority of MONICA over several competitive systems. Our dataset and source codes will be publicly released. IEEE
暂无评论