In the swiftly advancing realm of information retrieval, unsupervised cross-modal hashing has emerged as a focal point of research, taking advantage of the inherent advantages of the multifaceted and dynamism inherent...
详细信息
Building Automation Systems(BASs)are seeing increased usage in modern society due to the plethora of benefits they provide such as automation for climate control,HVAC systems,entry systems,and lighting *** BASs in use...
详细信息
Building Automation Systems(BASs)are seeing increased usage in modern society due to the plethora of benefits they provide such as automation for climate control,HVAC systems,entry systems,and lighting *** BASs in use are outdated and suffer from numerous vulnerabilities that stem from the design of the underlying BAS *** this paper,we provide a comprehensive,up-to-date survey on BASs and attacks against seven BAS protocols including BACnet,EnOcean,KNX,LonWorks,Modbus,ZigBee,and *** studies of secure BAS protocols are also presented,covering BACnet Secure Connect,KNX Data Secure,KNX/IP Secure,ModBus/TCP Security,EnOcean High Security and Z-Wave *** and ZigBee do not have security *** point out how these security protocols improve the security of the BAS and what issues remain.A case study is provided which describes a real-world BAS and showcases its vulnerabilities as well as recommendations for improving the security of *** seek to raise awareness to those in academia and industry as well as highlight open problems within BAS security.
In this study, the event-triggered asymptotic tracking control problem is considered for a class of nonholonomic systems in chained form for the time-varying reference input. First, to eliminate the ripple phenomenon ...
详细信息
In this study, the event-triggered asymptotic tracking control problem is considered for a class of nonholonomic systems in chained form for the time-varying reference input. First, to eliminate the ripple phenomenon caused by the imprecise compensation of the time-varying reference input, a novel time-varying event-triggered piecewise continuous control law and a triggering mechanism with a time-varying triggering function are developed. Second, an explicit integral input-to-state stable Lyapunov function is constructed for the time-varying closed-loop system regarding the sampling error as the external input. The origin of the closed-loop system is shown to be uniformly globally asymptotically stable for any global exponential decaying threshold signals, which in turn rules out the Zeno behavior. Moreover, infinitely fast sampling can be avoided by appropriately tuning the exponential convergence rate of the threshold signal. A numerical simulation example is provided to illustrate the proposed control approach.
With deep learning, satellite images can accurately identify land cover elements such as annual crops, forests, herbaceous vegetation, pastures, permanent crops, and rivers. Deep learning has become a valuable tool in...
详细信息
Knowledge graph(KG)serves as a specialized semantic network that encapsulates intricate relationships among real-world entities within a structured *** framework facilitates a transformation in information retrieval,t...
详细信息
Knowledge graph(KG)serves as a specialized semantic network that encapsulates intricate relationships among real-world entities within a structured *** framework facilitates a transformation in information retrieval,transitioning it from mere string matching to far more sophisticated entity *** this transformative process,the advancement of artificial intelligence and intelligent information services is ***,the role ofmachine learningmethod in the construction of KG is important,and these techniques have already achieved initial *** article embarks on a comprehensive journey through the last strides in the field of KG via machine *** a profound amalgamation of cutting-edge research in machine learning,this article undertakes a systematical exploration of KG construction methods in three distinct phases:entity learning,ontology learning,and knowledge ***,a meticulous dissection of machine learningdriven algorithms is conducted,spotlighting their contributions to critical facets such as entity extraction,relation extraction,entity linking,and link ***,this article also provides an analysis of the unresolved challenges and emerging trajectories that beckon within the expansive application of machine learning-fueled,large-scale KG construction.
Large language models(LLMs)have significantly advanced artificial intelligence(AI)by excelling in tasks such as understanding,generation,and reasoning across multiple *** these achieve-ments,LLMs have inherent limitat...
详细信息
Large language models(LLMs)have significantly advanced artificial intelligence(AI)by excelling in tasks such as understanding,generation,and reasoning across multiple *** these achieve-ments,LLMs have inherent limitations including outdated information,hallucinations,inefficiency,lack of interpretability,and challenges in domain-specific *** address these issues,this survey explores three promising directions in the post-LLM era:knowledge empowerment,model collaboration,and model ***,we examine methods of integrating external knowledge into LLMs to enhance factual accuracy,reasoning capabilities,and interpretability,including incorporating knowledge into training objectives,instruction tuning,retrieval-augmented inference,and knowledge ***,we discuss model collaboration strategies that leverage the complementary strengths of LLMs and smaller models to improve efficiency and domain-specific performance through techniques such as model merging,functional model collaboration,and knowledge ***,we delve into model co-evolution,in which multiple models collaboratively evolve by sharing knowledge,parameters,and learning strategies to adapt to dynamic environments and tasks,thereby enhancing their adaptability and continual *** illustrate how the integration of these techniques advances AI capabilities in science,engineering,and society—particularly in hypothesis development,problem formulation,problem-solving,and interpretability across various *** conclude by outlining future pathways for further advancement and applications.
This research introduces an innovative approach to facial emotion detection by integrating the Haar Cascade front face XML file for face detection and training a Convolutional Neural Network (CNN) model on the CK plus...
详细信息
Over the past few years,the application and usage of Machine Learning(ML)techniques have increased exponentially due to continuously increasing the size of data and computing *** the popularity of ML techniques,only a...
详细信息
Over the past few years,the application and usage of Machine Learning(ML)techniques have increased exponentially due to continuously increasing the size of data and computing *** the popularity of ML techniques,only a few research studies have focused on the application of ML especially supervised learning techniques in Requirement engineering(RE)activities to solve the problems that occur in RE *** authors focus on the systematic mapping of past work to investigate those studies that focused on the application of supervised learning techniques in RE activities between the period of 2002–*** authors aim to investigate the research trends,main RE activities,ML algorithms,and data sources that were studied during this ***-five research studies were selected based on our exclusion and inclusion *** results show that the scientific community used 57 *** those algorithms,researchers mostly used the five following ML algorithms in RE activities:Decision Tree,Support Vector Machine,Naïve Bayes,K-nearest neighbour Classifier,and Random *** results show that researchers used these algorithms in eight major RE *** activities are requirements analysis,failure prediction,effort estimation,quality,traceability,business rules identification,content classification,and detection of problems in requirements written in natural *** selected research studies used 32 private and 41 public data *** most popular data sources that were detected in selected studies are the Metric Data Programme from NASA,Predictor Models in Software engineering,and iTrust Electronic Health Care System.
With the continuous development of China's financial market and the gradual improvement of the financial system, investors are increasingly interested in participating in investments. At the same time, there is a ...
详细信息
Mobile apps have become widely adopted in our daily lives. To facilitate app discovery, most app markets provide recommendations for users, which may significantly impact how apps are accessed. However, little has bee...
详细信息
Mobile apps have become widely adopted in our daily lives. To facilitate app discovery, most app markets provide recommendations for users, which may significantly impact how apps are accessed. However, little has been known about the underlying relationships and how they reflect(or affect) user behaviors. To fill this gap, we characterize the app recommendation relationships in the i OS app store from the perspective of the complex network. We collect a dataset containing over 1.3 million apps and 50 million app recommendations. This dataset enables us to construct a complex network that captures app recommendation relationships. Through this, we explore the recommendation relationships between mobile apps and how these relationships reflect or affect user behavior patterns. The insights gained from our research can be valuable for understanding typical user behaviors and identifying potential policy-violating apps.
暂无评论