The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various *** methodologies have emerged as pivotal components...
详细信息
The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various *** methodologies have emerged as pivotal components of image preprocessing,fostering an improvement in the quality of remote sensing *** enhancement renders remote sensing data more indispensable,thereby enhancing the accuracy of target *** defogging techniques based on simplistic atmospheric degradation models have proven inadequate for mitigating non-uniform haze within remotely sensed *** response to this challenge,a novel UNet Residual Attention Network(URA-Net)is *** paradigmatic approach materializes as an end-to-end convolutional neural network distinguished by its utilization of multi-scale dense feature fusion clusters and gated jump *** essence of our methodology lies in local feature fusion within dense residual clusters,enabling the extraction of pertinent features from both preceding and current local data,depending on contextual *** intelligently orchestrated gated structures facilitate the propagation of these features to the decoder,resulting in superior outcomes in haze *** validation through a plethora of experiments substantiates the efficacy of URA-Net,demonstrating its superior performance compared to existing methods when applied to established datasets for remote sensing image *** the RICE-1 dataset,URA-Net achieves a Peak Signal-to-Noise Ratio(PSNR)of 29.07 dB,surpassing the Dark Channel Prior(DCP)by 11.17 dB,the All-in-One Network for Dehazing(AOD)by 7.82 dB,the Optimal Transmission Map and Adaptive Atmospheric Light For Dehazing(OTM-AAL)by 5.37 dB,the Unsupervised Single Image Dehazing(USID)by 8.0 dB,and the Superpixel-based Remote Sensing Image Dehazing(SRD)by 8.5 *** noteworthy,on the SateHaze1k dataset,URA-Net attains preeminence in overall performance,yieldi
The Internet of Things (IoT) has revolutionized our lives, but it has also introduced significant security and privacy challenges. The vast amount of data collected by these devices, often containing sensitive informa...
详细信息
Deepfake detection aims to mitigate the threat of manipulated content by identifying and exposing forgeries. However, previous methods primarily tend to perform poorly when confronted with cross-dataset scenarios. To ...
详细信息
Introduction: To propose a medical image registration method with significant performance improvement. The spatial transformation obtained by the traditional deformable image registration technology is not smooth enou...
详细信息
Collaborative inference(co-inference) accelerates deep neural network inference via extracting representations at the device and making predictions at the edge server, which however might disclose the sensitive inform...
详细信息
Collaborative inference(co-inference) accelerates deep neural network inference via extracting representations at the device and making predictions at the edge server, which however might disclose the sensitive information about private attributes of users(e.g.,race). Although many privacy-preserving mechanisms on co-inference have been proposed to eliminate privacy concerns, privacy leakage of sensitive attributes might still happen during inference. In this paper, we explore privacy leakage against the privacy-preserving co-inference by decoding the uploaded representations into a vulnerable form. We propose a novel attack framework named AttrL eaks, which consists of the shadow model of feature extractor(FE), the susceptibility reconstruction decoder,and the private attribute classifier. Based on our observation that values in inner layers of FE(internal representation) are more sensitive to attack, the shadow model is proposed to simulate the FE of the victim in the blackbox scenario and generates the internal ***, the susceptibility reconstruction decoder is designed to transform the uploaded representations of the victim into the vulnerable form, which enables the malicious classifier to easily predict the private attributes. Extensive experimental results demonstrate that AttrLeaks outperforms the state of the art in terms of attack success rate.
1 Introduction Graphical User Interface(GUI)widgets classification entails classifying widgets into their appropriate domain-specific types(e.g.,CheckBox and EditText)[1,2].The widgets classification is essential as i...
详细信息
1 Introduction Graphical User Interface(GUI)widgets classification entails classifying widgets into their appropriate domain-specific types(e.g.,CheckBox and EditText)[1,2].The widgets classification is essential as it supports several software engineering tasks,such as GUI design and testing[1,3].The ability to obtain better widget classification performance has become one of the keys to the success of these *** in recent years have proposed many techniques for improving widget classification performance[1,2,4].For example,Moran et al.[1]proposed a deep learning technique to classify GUI widgets into their domain-specific *** authors used the deep learning algorithm,a Convolutional Neural Network(CNN)architecture,to classify the GUI *** et al.[2]proposed combining text-based and non-text-based models to improve the overall performance of GUI widget detection while classifying the widgets with the ResNet50 model.
Nowadays, multimedia technology is progressing everyday. It is very easy to duplicate, distribute and modify digital images with online editing software. Image security and privacy are critical aspects of the multimed...
详细信息
Nowadays, multimedia technology is progressing everyday. It is very easy to duplicate, distribute and modify digital images with online editing software. Image security and privacy are critical aspects of the multimedia revolution. Therefore, digital image watermarking offers an alternative way out for image authentication. Currently, watermarking methods are crucial for safeguarding digital images. Several traditional watermarking approaches have been developed to protect images using spatial domains and transformations. Watermarking techniques that are more traditional are less resistant to repeated attacks. Deep learning-based watermarking has recently gained traction, greatly improving the safety of visual images in a variety of common applications. This study presents a robust and secure digital watermarking method for multimedia content protection and authentication. The watermark image is first transformed using the hybrid wavelet transform, and then it is encrypted using a chaos encryption algorithm. The cover image is simultaneously subjected to neighborhood-based feature extraction. Leveraging these extracted features, a novel Adaptive Gannet Optimization algorithm (AGOA) is employed to determine the optimal embedding location. Subsequently, the watermarked image is seamlessly integrated and extracted using the hybrid Generative adversarial network-based long short-term memory (GAN-LSTM) approach within the identified optimal region. Decryption and Inverse transformation are then used to get the original watermark image. Several previous methods, such as DNN, Deep-ANN, and Deep-CNN, are used to evaluate the performance of the proposed method. This technique improves multimedia content protection and authentication by guaranteeing strong and secure watermarking. The proposed method for digital image watermarking produced a peak signal-to-noise ratio of 46.412 and a mean square error of 24.512. Therefore, the proposed method performs well in digital image wa
Challenged networks (CNs) contain resource-constrained nodes deployed in regions where human intervention is difficult. Opportunistic networks (OppNets) are CNs with no predefined source-to-destination paths. Due to t...
详细信息
By solving the existing expectation-signal-to-noise ratio(expectation-SNR) based inequality model of the closed-form instantaneous cross-correlation function type of Choi-Williams distribution(CICFCWD),the linear cano...
详细信息
By solving the existing expectation-signal-to-noise ratio(expectation-SNR) based inequality model of the closed-form instantaneous cross-correlation function type of Choi-Williams distribution(CICFCWD),the linear canonical transform(LCT) free parameters selection strategies obtained are usually *** the second-order moment variance outperforms the first-order moment expectation in accurately characterizing output SNRs, this paper uses the variance analysis technique to improve parameters selection strategies. The CICFCWD's average variance of deterministic signals embedded in additive zero-mean stationary circular Gaussian noise processes is first obtained. Then the so-called variance-SNRs are defined and applied to model a variance-SNR based inequality. A stronger inequalities system is also formulated by integrating expectation-SNR and variance-SNR based inequality models. Finally, a direct application of the system in noisy one-component and bi-component linear frequency-modulated(LFM) signals detection is studied. Analytical algebraic constraints on LCT free parameters newly derived seem more accurate than the existing ones, achieving better noise suppression effects. Our methods have potential applications in optical, radar, communication and medical signal processing.
The commonly used trial-and-error method of biodegradable Zn alloys is costly and *** this study,based on the self-built database of biodegradable Zn alloys,two machine learning models are established by the first tim...
详细信息
The commonly used trial-and-error method of biodegradable Zn alloys is costly and *** this study,based on the self-built database of biodegradable Zn alloys,two machine learning models are established by the first time to predict the ultimate tensile strength(UTS)and immersion corrosion rate(CR)of biodegradable Zn alloys.A real-time visualization interface has been established to design Zn-Mn based alloys;a representative alloy is *** tensile mechanical properties and immersion corrosion rate tests,its UTS reaches 420 MPa,and the prediction error is only 0.95%.CR is 73μm/a and the prediction error is 5.5%,which elevates 50 MPa grade of UTS and owns appropriate corrosion ***,influences of the selected features on UTS and CR are discussed in *** combined application of UTS and CR model provides a new strategy for synergistically regulating comprehens-ive properties of biodegradable Zn alloys.
暂无评论