咨询与建议

限定检索结果

文献类型

  • 179 篇 会议
  • 123 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 304 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 174 篇 工学
    • 130 篇 计算机科学与技术...
    • 119 篇 软件工程
    • 35 篇 信息与通信工程
    • 34 篇 生物工程
    • 25 篇 生物医学工程(可授...
    • 23 篇 光学工程
    • 22 篇 控制科学与工程
    • 12 篇 电气工程
    • 10 篇 材料科学与工程(可...
    • 9 篇 安全科学与工程
    • 8 篇 机械工程
    • 8 篇 化学工程与技术
    • 8 篇 交通运输工程
    • 7 篇 仪器科学与技术
    • 7 篇 电子科学与技术(可...
    • 7 篇 建筑学
  • 120 篇 理学
    • 58 篇 数学
    • 40 篇 物理学
    • 40 篇 生物学
    • 27 篇 统计学(可授理学、...
    • 13 篇 化学
    • 10 篇 系统科学
  • 44 篇 管理学
    • 29 篇 图书情报与档案管...
    • 21 篇 管理科学与工程(可...
    • 12 篇 工商管理
  • 18 篇 医学
    • 17 篇 临床医学
    • 13 篇 基础医学(可授医学...
    • 8 篇 药学(可授医学、理...
  • 7 篇 经济学
    • 7 篇 应用经济学
  • 7 篇 法学
    • 7 篇 社会学
  • 5 篇 农学
  • 2 篇 教育学
  • 1 篇 军事学

主题

  • 18 篇 computational mo...
  • 17 篇 accuracy
  • 17 篇 training
  • 14 篇 deep learning
  • 13 篇 data models
  • 11 篇 reinforcement le...
  • 11 篇 convolutional ne...
  • 10 篇 feature extracti...
  • 8 篇 transformers
  • 8 篇 neural networks
  • 7 篇 semantic segment...
  • 7 篇 graph neural net...
  • 6 篇 transfer learnin...
  • 6 篇 image segmentati...
  • 6 篇 visualization
  • 6 篇 biological syste...
  • 6 篇 robustness
  • 6 篇 adaptation model...
  • 5 篇 covid-19
  • 5 篇 manuals

机构

  • 49 篇 school of ai and...
  • 30 篇 school of ai and...
  • 22 篇 xi'an jiaotong-l...
  • 9 篇 school of ai and...
  • 8 篇 graduate school ...
  • 8 篇 school of advanc...
  • 8 篇 school of comput...
  • 8 篇 school of intern...
  • 7 篇 school of comput...
  • 6 篇 xi'an jiaotong-l...
  • 6 篇 university of no...
  • 6 篇 school of advanc...
  • 6 篇 xi'an jiaotong-l...
  • 6 篇 school of comput...
  • 6 篇 tencent ai lab
  • 6 篇 school of comput...
  • 6 篇 school of ai and...
  • 5 篇 shenzhen institu...
  • 5 篇 university of ch...
  • 5 篇 melaka malaysia

作者

  • 15 篇 jionglong su
  • 12 篇 park jong c.
  • 12 篇 jeong soyeong
  • 11 篇 hengyan liu
  • 10 篇 bintao hu
  • 8 篇 hong-seng gan
  • 8 篇 su jionglong
  • 8 篇 hou xianxu
  • 8 篇 liu jingxin
  • 8 篇 pa-pa-min
  • 8 篇 wenzhang zhang
  • 8 篇 hwang sung ju
  • 8 篇 liu hengyan
  • 8 篇 cho sukmin
  • 8 篇 baek jinheon
  • 7 篇 angelos stefanid...
  • 7 篇 chen qi
  • 7 篇 wang zimu
  • 7 篇 hu bintao
  • 6 篇 wang jianjia

语言

  • 280 篇 英文
  • 23 篇 其他
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 中文
检索条件"机构=School of AI and Advanced Computing"
304 条 记 录,以下是141-150 订阅
排序:
Pseudo Training Data Generation for Unsupervised Cell Membrane Segmentation in Immunohistochemistry Images
Pseudo Training Data Generation for Unsupervised Cell Membra...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Xi Long Tianyang Wang Yanjia Kan Yunze Wang Silin Chen Albert Zhou Xianxu Hou Jingxin Liu School of AI and Advanced Computing Xi’an Jiaotong-Liverpool University Suzhou China School of Mathematics and Statistics Beijing Jiaotong University Beijing China University of Warwick UK
In the realm of clinical diagnostics and medical research, quantitative assessment of membrane activity in immunohistochemistry (IHC) images is standard practice. Despite a high demand for cell membrane segmentation, ... 详细信息
来源: 评论
OPTIMAL SETTINGS FOR CRYPTOCURRENCY TRADING PaiRS
arXiv
收藏 引用
arXiv 2022年
作者: Zhang, Di Zhou, Youzhou School of AI and Advanced Computing Xi’an Jiaotong-Liverpool University Suzhou215123 China School of Mathematics and Physics Xi’an Jiaotong-Liverpool University Suzhou215123 China
The goal of cryptocurrencies is decentralization, but it is impractical to set up a trading market between every two currencies. To solve this optimization problem, we use a two-stage process: 1) Fill in missing value... 详细信息
来源: 评论
Combining Transformer based Deep Reinforcement Learning with Black-Litterman Model for Portfolio Optimization
arXiv
收藏 引用
arXiv 2024年
作者: Sun, Ruoyu Stefanidis, Angelos Jiang, Zhengyong Su, Jionglong Xi’an Jiaotong-Liverpool University School of Mathematics and Physics Department of Financial and Actuarial Mathematics Suzhou215123 China School of AI and Advanced Computing Suzhou215412 China
As a model-free algorithm, deep reinforcement learning (DRL) agent learns and makes decisions by interacting with the environment in an unsupervised way. In recent years, DRL algorithms have been widely applied by sch... 详细信息
来源: 评论
MODELING RANDOMLY WALKING VOLATILITY WITH CHaiNED GAMMA DISTRIBUTIONS
arXiv
收藏 引用
arXiv 2022年
作者: Zhang, Di Niu, Qiang Zhou, Youzhou School of AI and Advanced Computing Xi'an Jiaotong-Liverpool University Suzhou215123 China School of Mathematics and Physics Xi'an Jiaotong-Liverpool University Suzhou215123 China
Volatility clustering is a common phenomenon in financial time series. Typically, linear models can be used to describe the temporal autocorrelation of the (logarithmic) variance of returns. Considering the difficulty... 详细信息
来源: 评论
MDAEN: Multi-Dimensional Attention-based Ensemble Network in Deep Reinforcement Learning Framework for Portfolio Management
MDAEN: Multi-Dimensional Attention-based Ensemble Network in...
收藏 引用
International Conference on Cyber-Enabled Distributed computing and Knowledge Discovery, CyberC
作者: Ruiyu Zhang Xiaotian Ren Fengchen Gu Angelos Stefanidis Ruoyu Sun Jionglong Su School of AI and Advanced Computing XJTLU Entrepreneur College (Taicang) School of Mathematics and Physics Xi’an Jiaotong-Liverpool University Xi’an Jiaotong-Liverpool University Suzhou China
Reinforcement Learning algorithms are widely applied in many diverse fields, including portfolio management. Ensemble of Identical Independent Evaluators (EIIE) framework proposed by Jiang et al. achieved portfolio ma... 详细信息
来源: 评论
Bio-inspired multi-layer spiking neural network extracts discriminative features from speech signals
arXiv
收藏 引用
arXiv 2017年
作者: Tavanaei, Amirhossein Maida, Anthony Center for Advanced Computer Studies Bio-inspired AI Lab School of Computing and Informatics University of Louisiana at Lafayette LafayetteLA70504 United States
Spiking neural networks (SNNs) enable power-efficient implementations due to their sparse, spike-based coding scheme. This paper develops a bio-inspired SNN that uses unsupervised learning to extract discriminative fe... 详细信息
来源: 评论
Generalized-Extended-State-Observer and Equivalent-Input-Disturbance Methods for Active Disturbance Rejection: Deep Observation and Comparison
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2023年 第4期10卷 957-968页
作者: Jinhua She Kou Miyamoto Qing-Long Han Min Wu Hiroshi Hashimoto Qing-Guo Wang School of Engineering Tokyo University of TechnologyHachiojiTokyo 192-0982Japan K.Miyamoto is with the Institute of Technology Shimizu CorporationKotoTokyo 135-0044Japan School of Science Computing and Engineering TechnologiesSwinburne University of TechnologyMelbourneVIC 3122Australia School of Automation China University of GeosciencesWuhan 430074 Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Engineering Research Center of Intelligent Technology for Geo-Exploration Ministry of EducationWuhan 430074China School of Industrial Technology Advanced Institute of Industrial TechnologyTokyo 140-0011Japan Institute of Artificial Intelligence and Future Networks Beijing Normal UniversityZhuhai 519087 Guangdong Key Lab of AI and Multi-Modal Data Processing Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science BNUHKBU United International College Zhuhai 519087China
Active disturbance-rejection methods are effective in estimating and rejecting disturbances in both transient and steady-state *** paper presents a deep observation on and a comparison between two of those methods:the... 详细信息
来源: 评论
Attention-Based Multimodal Bilinear Feature Fusion for Lung Cancer Survival Analysis
Attention-Based Multimodal Bilinear Feature Fusion for Lung ...
收藏 引用
IEEE Symposium on Bioinformatics and Bioengineering (BIBE)
作者: Hongbin Na Lilin Wang Xinyao Zhuang Jianfei He Zhenyu Liu Zimu Wang Hong-Seng Gan School of Computer Science and Engineering University of New South Wales Sydney Australia School of AI and Advanced Computing Xi'an Jiaotong-Liverpool University Suzhou China School of Advanced Technology Xi'an Jiaotong-Liverpool University Suzhou China
Survival analysis (SA) is an essential task that aims to predict survival status and duration, determine individual and precise treatment strategies, and assess disease intensity and direction. However, the current re...
来源: 评论
Generating Valid and Natural Adversarial Examples with Large Language Models
Generating Valid and Natural Adversarial Examples with Large...
收藏 引用
International Conference on Computer Supported Cooperative Work in Design
作者: Zimu Wang Wei Wang Qi Chen Qiufeng Wang Anh Nguyen School of Advanced Technology Xi’an Jiaotong-Liverpool University Suzhou China Department of Computer Science University of Liverpool Liverpool United Kingdom School of AI and Advanced Computing Xi’an Jiaotong-Liverpool University Suzhou China
Deep learning-based natural language processing (NLP) models, particularly pre-trained language models (PLMs), have been revealed to be vulnerable to adversarial attacks. However, the adversarial examples generated by... 详细信息
来源: 评论
Application of Voformer-EC Clustering Algorithm to Stock Multivariate Time Series Data
Application of Voformer-EC Clustering Algorithm to Stock Mul...
收藏 引用
International Conference on Cyber-Enabled Distributed computing and Knowledge Discovery, CyberC
作者: Ning Xin Shaheen Khatoon Md Maruf Hasan School of AI and Advanced Computing Xi’an Jiaotong-Liverpool University Suzhou China School of Arch. Comp. and Engineering University of East London London United Kingdom
Clustering stocks based on similar increasing and decreasing trends pose a challenging problem in stock forecasting. Despite the extensive research on stock forecasting, striking a balance between effective clustering...
来源: 评论