咨询与建议

限定检索结果

文献类型

  • 12,922 篇 会议
  • 9,217 篇 期刊文献
  • 148 册 图书

馆藏范围

  • 22,287 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 14,049 篇 工学
    • 10,781 篇 计算机科学与技术...
    • 8,896 篇 软件工程
    • 3,151 篇 信息与通信工程
    • 2,469 篇 控制科学与工程
    • 2,133 篇 生物工程
    • 1,756 篇 电气工程
    • 1,531 篇 生物医学工程(可授...
    • 1,442 篇 光学工程
    • 1,078 篇 电子科学与技术(可...
    • 945 篇 机械工程
    • 703 篇 化学工程与技术
    • 626 篇 网络空间安全
    • 592 篇 仪器科学与技术
    • 559 篇 交通运输工程
    • 518 篇 安全科学与工程
    • 463 篇 动力工程及工程热...
  • 7,469 篇 理学
    • 3,730 篇 数学
    • 2,431 篇 生物学
    • 1,852 篇 物理学
    • 1,398 篇 统计学(可授理学、...
    • 883 篇 化学
    • 581 篇 系统科学
  • 4,048 篇 管理学
    • 2,352 篇 管理科学与工程(可...
    • 1,911 篇 图书情报与档案管...
    • 974 篇 工商管理
  • 1,423 篇 医学
    • 1,204 篇 临床医学
    • 1,041 篇 基础医学(可授医学...
    • 625 篇 药学(可授医学、理...
    • 603 篇 公共卫生与预防医...
  • 643 篇 法学
    • 562 篇 社会学
  • 389 篇 经济学
  • 339 篇 农学
  • 277 篇 教育学
  • 66 篇 文学
  • 33 篇 军事学
  • 25 篇 艺术学
  • 4 篇 历史学
  • 3 篇 哲学

主题

  • 989 篇 accuracy
  • 983 篇 deep learning
  • 717 篇 feature extracti...
  • 699 篇 training
  • 500 篇 machine learning
  • 488 篇 computational mo...
  • 455 篇 convolutional ne...
  • 398 篇 semantics
  • 374 篇 predictive model...
  • 366 篇 data models
  • 328 篇 real-time system...
  • 313 篇 internet of thin...
  • 297 篇 artificial intel...
  • 290 篇 neural networks
  • 284 篇 optimization
  • 273 篇 reinforcement le...
  • 258 篇 support vector m...
  • 257 篇 image segmentati...
  • 253 篇 object detection
  • 228 篇 contrastive lear...

机构

  • 257 篇 school of artifi...
  • 242 篇 school of comput...
  • 238 篇 school of comput...
  • 237 篇 school of artifi...
  • 230 篇 school of artifi...
  • 213 篇 chitkara univers...
  • 193 篇 institute of art...
  • 192 篇 school of comput...
  • 178 篇 school of comput...
  • 153 篇 school of comput...
  • 139 篇 school of artifi...
  • 113 篇 university of sc...
  • 105 篇 school of comput...
  • 104 篇 gaoling school o...
  • 103 篇 school of comput...
  • 96 篇 school of comput...
  • 94 篇 school of artifi...
  • 91 篇 shanghai artific...
  • 85 篇 college of compu...
  • 85 篇 school of comput...

作者

  • 70 篇 niyato dusit
  • 65 篇 liu yang
  • 64 篇 sunil g.
  • 56 篇 li chenglong
  • 55 篇 zhang min
  • 50 篇 deepak banerjee
  • 46 篇 zheng wei-shi
  • 45 篇 wang xiao
  • 41 篇 liu jun
  • 40 篇 li yang
  • 39 篇 yang yang
  • 37 篇 zhou jie
  • 35 篇 li xin
  • 33 篇 banerjee deepak
  • 32 篇 golland polina
  • 32 篇 wen ji-rong
  • 31 篇 chang yi
  • 30 篇 li zhenghua
  • 29 篇 gill kanwarparta...
  • 29 篇 chang xiaojun

语言

  • 19,126 篇 英文
  • 3,023 篇 其他
  • 176 篇 中文
  • 5 篇 日文
  • 3 篇 德文
  • 2 篇 法文
  • 2 篇 斯洛文尼亚文
检索条件"机构=School of Artificial Intelligence and Data Science and School of Computer Science and Technology"
22287 条 记 录,以下是131-140 订阅
排序:
Causal Representation Enhances Cross-Domain Named Entity Recognition in Large Language Models
收藏 引用
computers, Materials & Continua 2025年 第5期83卷 2809-2828页
作者: Jiahao Wu Jinzhong Xu Xiaoming Liu Guan Yang Jie Liu School of Artificial Intelligence Zhongyuan University of TechnologyZhengzhou450007China School of Computer Science Zhongyuan University of TechnologyZhengzhou450007China Zhengzhou Key Laboratory of Text Processing and Image Understanding Zhengzhou450007China School of Information Science and Technology North China University of TechnologyBeijing100144China
Large language models cross-domain named entity recognition task in the face of the scarcity of large language labeled data in a specific domain,due to the entity bias arising from the variation of entity information ... 详细信息
来源: 评论
A Tutorial on Federated Learning from Theory to Practice:Foundations,Software Frameworks,Exemplary Use Cases,and Selected Trends
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2024年 第4期11卷 824-850页
作者: M.Victoria Luzón Nuria Rodríguez-Barroso Alberto Argente-Garrido Daniel Jiménez-López Jose M.Moyano Javier Del Ser Weiping Ding Francisco Herrera Department of Software Engineering Andalusian Research Institute in Data Science and Computational Intelligence(DaSCI)University of GranadaGranada 18071Spain Department of Computer Science and Artificial Intelligence Andalusian Research Institute in Data Science and Computational Intelligence(DaSCI)University of GranadaGranada 18071Spain Department of Communications Engineering University of the Basque Country(UPV/EHU)and also with TECNALIABasque Research&Technology Alliance(BRTA)Spain School of Information Science and Technology Nantong UniversityNantong 226019China
When data privacy is imposed as a necessity,Federated learning(FL)emerges as a relevant artificial intelligence field for developing machine learning(ML)models in a distributed and decentralized *** allows ML models t... 详细信息
来源: 评论
LGDF-Net: Local and Global Feature Based Dual-Branch Fusion Networks for Deepfake Detection
收藏 引用
IEEE Transactions on Circuits and Systems for Video technology 2025年 第6期35卷 5489-5500页
作者: Long, Min Liu, Zhenyu Zhang, Le-Bing Peng, Fei Guangzhou University School of Electronics and Communication Engineering Guangdong Guangzhou510006 China Changsha University of Science and Technology School of Computer and Communication Engineering Changsha410114 China Huaihua University School of Computer and Artificial Intelligence Huaihua418000 China Guangzhou University School of Artificial Intelligence Guangdong Guangzhou510006 China
With the rapid development of Deepfake technology, social security is facing great challenges. Although numerous Deepfake detection algorithms based on traditional CNN frameworks perform well on specific datasets, the... 详细信息
来源: 评论
Malayalam Fake News Detection Using Optimized Convolutional Neural Network (OPCNN)  11
Malayalam Fake News Detection Using Optimized Convolutional ...
收藏 引用
11th IEEE International Conference on Advances in Computing and Communications, ICACC 2024
作者: Mohan, Aiswarya Iqbal, Nafla Mashpher, Manaal Rajagiri School of Engineering and Technology Department of Artificial Intelligence and Data Science Kakkanad India
These days, a range of issues are being caused by fake news, including satirical pieces, fake news, and intentional government propaganda. Because of the blathering social media discourse, the idea of "fake news&... 详细信息
来源: 评论
Multiscale Complementary Semantic Enhancement Network for Welding Seam X-ray Image Defect Detection  7
Multiscale Complementary Semantic Enhancement Network for We...
收藏 引用
7th International Symposium on Autonomous Systems, ISAS 2024
作者: Liu, Weipeng Wang, Yuheng Chen, Haiyong Hebei University of Technology School of Artificial Intelligence and Data Science Tianjin300132 China
The core challenge in the analysis of welding seam X-ray images is the problem of multiscale defects, where defects can range in size and shape from tiny pores to larger unpenetrated areas. However, the current method... 详细信息
来源: 评论
Multi-level Attention-enhanced Learning for Fine-Grained Visual Classification  24
Multi-level Attention-enhanced Learning for Fine-Grained Vis...
收藏 引用
8th International Conference on computer science and artificial intelligence, CSAI 2024
作者: Ding, Kaifeng Yang, Caolin Yang, Chengzhuan Zheng, Zhonglong School of Computer Science and Technology School of Artificial Intelligence Zhejiang Normal University ZheJiang Jinhua China
Due to significant intra-class variations and subtle inter-class differences, fine-grained images often pose challenges. In this paper, we propose a multi-level attention-enhanced network framework to address this iss... 详细信息
来源: 评论
A Diffusion Model for Traffic data Imputation
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2025年 第3期12卷 606-617页
作者: Bo Lu Qinghai Miao Yahui Liu Tariku Sinshaw Tamir Hongxia Zhao Xiqiao Zhang Yisheng Lv Fei-Yue Wang the School of Artificial Intelligence University of Chinese Academy of Sciences Baidu Inc. IEEE the State Key Laboratory for Multimodal Artificial Intelligence Systems Institute of Automation Chinese Academy of Sciences Meituan Guangdong University of Technology the Department of Transportation Engineering School of Transportation Science and Technology Harbin Institute of Technology
Imputation of missing data has long been an important topic and an essential application for intelligent transportation systems(ITS) in the real world. As a state-of-the-art generative model, the diffusion model has p... 详细信息
来源: 评论
CaDRL: Document-level Relation Extraction via Context-aware Differentiable Rule Learning  31
CaDRL: Document-level Relation Extraction via Context-aware ...
收藏 引用
31st International Conference on Computational Linguistics, COLING 2025
作者: Zhang, Kunli Wu, Pengcheng Yu, Bohan Wu, Kejun Zheng, Aoze Huang, Xiyang Zhu, Chenkang Peng, Min Zan, Hongying Song, Yu School of Computer Science and Artificial Intelligence Zhengzhou University China School of Computer Science Wuhan University China
Document-level Relation Extraction (DocRE) aims to extract relations from documents. Compared with sentence-level relation extraction, it is necessary to extract long-distance dependencies. Existing methods enhance th... 详细信息
来源: 评论
Personalized Music Recommendation: A Comparative Study of Machine Learning and Deep Learning Approaches  11
Personalized Music Recommendation: A Comparative Study of Ma...
收藏 引用
11th IEEE International Conference on Advances in Computing and Communications, ICACC 2024
作者: Iqbal, Nafla Mohan, Aiswarya Syjo, Ann Rose Rajagiri School of Engineering and Technology Dept of Artificial Intelligence and Data Science Kakkanad India
The rapid advancement of music playback technology, particularly within mobile platforms, has fundamentally transformed user engagement with music. Despite significant improvements in music retrieval techniques over t... 详细信息
来源: 评论
Residential Energy Scheduling With Solar Energy Based on Dyna Adaptive Dynamic Programming
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2025年 第2期12卷 403-413页
作者: Kang Xiong Qinglai Wei Hongyang Li the Institute of Systems Engineering Macau University of Science and Technology IEEE the State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of Automation Chinese Academy of Sciences the School of Artificial Intelligence University of Chinese Academy of Sciences
Learning-based methods have become mainstream for solving residential energy scheduling problems. In order to improve the learning efficiency of existing methods and increase the utilization of renewable energy, we pr... 详细信息
来源: 评论