咨询与建议

限定检索结果

文献类型

  • 244 篇 期刊文献
  • 217 篇 会议

馆藏范围

  • 461 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 317 篇 工学
    • 228 篇 计算机科学与技术...
    • 187 篇 软件工程
    • 71 篇 信息与通信工程
    • 59 篇 控制科学与工程
    • 49 篇 电气工程
    • 36 篇 生物工程
    • 33 篇 生物医学工程(可授...
    • 30 篇 机械工程
    • 29 篇 光学工程
    • 25 篇 电子科学与技术(可...
    • 17 篇 仪器科学与技术
    • 11 篇 化学工程与技术
    • 10 篇 动力工程及工程热...
    • 10 篇 交通运输工程
    • 9 篇 网络空间安全
    • 7 篇 建筑学
  • 160 篇 理学
    • 90 篇 数学
    • 40 篇 生物学
    • 38 篇 物理学
    • 29 篇 统计学(可授理学、...
    • 20 篇 系统科学
    • 14 篇 化学
  • 94 篇 管理学
    • 54 篇 管理科学与工程(可...
    • 43 篇 图书情报与档案管...
    • 17 篇 工商管理
  • 33 篇 医学
    • 26 篇 临床医学
    • 21 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
    • 8 篇 公共卫生与预防医...
  • 9 篇 法学
  • 7 篇 经济学
    • 7 篇 应用经济学
  • 6 篇 教育学
  • 6 篇 农学
  • 3 篇 艺术学
  • 1 篇 文学

主题

  • 18 篇 deep learning
  • 17 篇 training
  • 15 篇 predictive model...
  • 14 篇 feature extracti...
  • 12 篇 contrastive lear...
  • 12 篇 semantics
  • 12 篇 data models
  • 11 篇 computational mo...
  • 8 篇 convolution
  • 8 篇 analytical model...
  • 7 篇 convergence
  • 7 篇 machine learning
  • 6 篇 object detection
  • 6 篇 reinforcement le...
  • 6 篇 sparse matrices
  • 6 篇 speech processin...
  • 6 篇 knowledge graph
  • 6 篇 tensors
  • 6 篇 artificial intel...
  • 6 篇 forecasting

机构

  • 24 篇 key laboratory o...
  • 24 篇 school of comput...
  • 21 篇 national enginee...
  • 21 篇 chongqing key la...
  • 20 篇 xi'an key labora...
  • 18 篇 shaanxi key labo...
  • 15 篇 school of comput...
  • 15 篇 school of cyber ...
  • 14 篇 school of comput...
  • 13 篇 national enginee...
  • 12 篇 shaanxi key labo...
  • 12 篇 engineering rese...
  • 11 篇 key lab. of inte...
  • 11 篇 school of comput...
  • 11 篇 school of comput...
  • 11 篇 manufacturing in...
  • 10 篇 key laboratory o...
  • 10 篇 peng cheng labor...
  • 10 篇 key laboratory o...
  • 10 篇 guangdong provin...

作者

  • 23 篇 huang qingming
  • 21 篇 xu qianqian
  • 16 篇 yang zhiyong
  • 13 篇 shen linlin
  • 11 篇 chen yanping
  • 11 篇 wang zhongmin
  • 10 篇 li tianrui
  • 10 篇 cao xiaochun
  • 10 篇 bao shilong
  • 9 篇 penghua li
  • 8 篇 xia hong
  • 8 篇 yuan ye
  • 8 篇 wang guoyin
  • 7 篇 xin luo
  • 7 篇 yu zitong
  • 7 篇 mingsheng shang
  • 7 篇 zhiyong yang
  • 7 篇 linlin shen
  • 7 篇 yanping chen
  • 6 篇 ye yuan

语言

  • 390 篇 英文
  • 63 篇 其他
  • 15 篇 中文
检索条件"机构=School of Automation& Key Laboratory of Intelligent Computing for Big Data"
461 条 记 录,以下是201-210 订阅
排序:
Padding Adversarial Training: Enhancing Robustness with Adversarial Space Hypothesis
SSRN
收藏 引用
SSRN 2022年
作者: Sun, Jiaze Wen, Sulei School of Computer Science and Technology Xi’an University of Posts and Telecommunications Xi’an710121 China Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing Xi’an710121 China Xi 'an Key Laboratory of Big Data and Intelligent Computing Xi’an710127 China
Adversarial training, represented by the projected gradient descent(PGD) adversarial training, effectively improves adversarial robustness within the upper bound of perturbation to the deep neural network(DNN) by appl... 详细信息
来源: 评论
GM-DF: Generalized Multi-Scenario Deepfake Detection
arXiv
收藏 引用
arXiv 2024年
作者: Lai, Yingxin Yu, Zitong Yang, Jing Li, Bin Kang, Xiangui Shen, Linlin The School of Computing and Information Technology Great Bay University Dongguan523000 China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen518060 China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen University Shenzhen518060 China The Guangdong Key Laboratory of Information Security The School of Computer Science and Engineering Sun Yat-sen University Guangzhou510080 China Computer Vision Institute School of Computer Science & Software Engineering Shenzhen Institute of Artificial Intelligence and Robotics for Society Guangdong Key Laboratory of Intelligent Information Processing National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen518060 China
Existing face forgery detection usually follows the paradigm of training models in a single domain, which leads to limited generalization capacity when unseen scenarios and unknown attacks occur. In this paper, we ela... 详细信息
来源: 评论
DEGSTalk: Decomposed Per-Embedding Gaussian Fields for Hair-Preserving Talking Face Synthesis
arXiv
收藏 引用
arXiv 2024年
作者: Deng, Kaijun Zheng, Dezhi Xie, Jindong Wang, Jinbao Xie, Weicheng Shen, Linlin Song, Siyang Computer Vision Institute School of Computer Science and Software Engineering Shenzhen University China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China Guangdong Provincial Key Laboratory of Intelligent Information Processing China Department of Computer Science University of Exeter United Kingdom
Accurately synthesizing talking face videos and capturing fine facial features for individuals with long hair presents a significant challenge. To tackle these challenges in existing methods, we propose a decomposed p... 详细信息
来源: 评论
Research and application of artificial intelligence based webshell detection model: A literature review
arXiv
收藏 引用
arXiv 2024年
作者: Ma, Mingrui Han, Lansheng Zhou, Chunjie Hubei Key Laboratory of Distributed System Security Hubei Engineering Research Center on Big Data Security School of Cyber Science and Engineering Huazhong University of Science and Technology Wuhan430074 China The Key Laboratory of Ministry of Education for Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Hubei Wuhan430074 China
Webshell, as the"culprit" behind numerous network attacks, is one of the research hotspots in the field of cybersecurity. However, the complexity, stealthiness, and confusing nature of webshells pose signifi... 详细信息
来源: 评论
Research and application of Transformer based anomaly detection model: A literature review
arXiv
收藏 引用
arXiv 2024年
作者: Ma, Mingrui Han, Lansheng Zhou, Chunjie Hubei Key Laboratory of Distributed System Security Hubei Engineering Research Center on Big Data Security School of Cyber Science and Engineering Huazhong University of Science and Technology Hubei Wuhan430074 China The Key Laboratory of Ministry of Education for Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Hubei Wuhan430074 China
Transformer, as one of the most advanced neural network models in Natural Language Processing (NLP), exhibits diverse applications in the field of anomaly detection. To inspire research on Transformer-based anomaly de... 详细信息
来源: 评论
HairDiffusion: Vivid Multi-Colored Hair Editing via Latent Diffusion
arXiv
收藏 引用
arXiv 2024年
作者: Zeng, Yu Zhang, Yang Liu, Jiachen Shen, Linlin Deng, Kaijun He, Weizhao Wang, Jinbao Computer Vision Institute School of Computer Science & Software Engineering Shenzhen University China Shenzhen Institute of Artificial Intelligence and Robotics for Society China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China Guangdong Provincial Key Laboratory of Intelligent Information Processing China
Hair editing is a critical image synthesis task that aims to edit hair color and hairstyle using text descriptions or reference images, while preserving irrelevant attributes (e.g., identity, background, cloth). Many ... 详细信息
来源: 评论
scBERC: A Batch Effect-Removed Clustering method for single-cell omics
scBERC: A Batch Effect-Removed Clustering method for single-...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Yitao Zhou Fan Yang Ying Wang Feng Zeng Department of Automation National Institute for Data Science in Health and Medicine Xiamen Key Laboratory of Big Data Intelligent Analysis & Decision Xiamen University Xiamen China State Key Laboratory of Cellular Stress Biology School of Life Sciences Research Unit of Cellular Stress of CAMS Cancer Research Center School of Medicine Xiamen University Xiamen China
Single-cell clustering is a pivotal technique in deciphering single-cell omics data, enabling us to gain insights into cell function and heterogeneity. However, the presence of batch effects in single-cell omics data ...
来源: 评论
DCSF-KD: Dynamic Channel-wise Spatial Feature Knowledge Distillation for Object Detection  39
DCSF-KD: Dynamic Channel-wise Spatial Feature Knowledge Dist...
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Dai, Tao Lin, Yang Guo, Hang Wang, Jinbao Zhu, Zexuan College of Computer Science and Software Engineering Shenzhen University China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen China Shenzhen City Key Laboratory of Embedded System Design Shenzhen China Guangdong Provincial Key Laboratory of Intelligent Information Processing Shenzhen China
Knowledge distillation (KD) has recently gained great success in the field of object detection. By transferring the knowledge of the spatial or channel domain from the teacher model to the student model, it allows for... 详细信息
来源: 评论
Ascl: Accelerating Semi-Supervised Learning Via Contrastive Learning
SSRN
收藏 引用
SSRN 2024年
作者: Liu, Haixiong Li, Zuoyong Wu, Jiawei Zeng, Kun Hu, Rong Zeng, Wei Fujian Provincial Key Laboratory of Big Data Mining and Applications School of Computer Science and Mathematics Fujian University of Technology Fuzhou350118 China Fujian Provincial Key Laboratory of Information Processing and Intelligent Control College of Computer and Data Science Minjiang University Fuzhou350121 China School of Intelligent Systems Engineering Shenzhen Campus of Sun Yat-sen University Guangdong Shenzhen518107 China The Key Laboratory of Cognitive Computing and Intelligent Information Processing of Fujian Education Institutions Wuyi University Wuyishan354300 China School of Physics and Mechanical and Electrical Engineering Longyan University Longyan364012 China
SSL(Semi-supervised learning) is widely used in machine learning, which leverages labeled and unlabeled data to improve model performance. SSL aims to optimize class mutual information, but noisy pseudo-labels introdu... 详细信息
来源: 评论
Hyperbolic Neural Network Based Preselection for Expensive Multi-Objective Optimization
收藏 引用
IEEE Transactions on Evolutionary Computation 2024年 1-1页
作者: Li, Bingdong Yang, Yanting Hong, Wenjing Yang, Peng Zhou, Aimin Shanghai Institute of AI for Education the School of Computer Science and Technology and the Shanghai Frontiers Science Center of Molecule Intelligent Syntheses East China Normal University Shanghai China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen China Department of Computer Science and Engineering Guangdong Key Laboratory of Brain-Inspired Intelligent Computation Southern University of Science and Technology Shenzhen China
A series of surrogate-assisted evolutionary algorithms (SAEAs) have been proposed for expensive multi-objective optimization problems (EMOPs), building cheap surrogate models to replace the expensive real function eva... 详细信息
来源: 评论