咨询与建议

限定检索结果

文献类型

  • 2,545 篇 期刊文献
  • 2,356 篇 会议
  • 4 册 图书

馆藏范围

  • 4,905 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,249 篇 工学
    • 2,481 篇 计算机科学与技术...
    • 2,108 篇 软件工程
    • 790 篇 信息与通信工程
    • 557 篇 生物工程
    • 376 篇 电气工程
    • 353 篇 控制科学与工程
    • 309 篇 生物医学工程(可授...
    • 266 篇 光学工程
    • 244 篇 电子科学与技术(可...
    • 193 篇 机械工程
    • 187 篇 化学工程与技术
    • 103 篇 动力工程及工程热...
    • 97 篇 仪器科学与技术
    • 91 篇 安全科学与工程
    • 89 篇 建筑学
    • 87 篇 网络空间安全
    • 81 篇 土木工程
  • 1,805 篇 理学
    • 1,000 篇 数学
    • 604 篇 生物学
    • 378 篇 物理学
    • 344 篇 统计学(可授理学、...
    • 211 篇 化学
    • 151 篇 系统科学
  • 897 篇 管理学
    • 493 篇 管理科学与工程(可...
    • 451 篇 图书情报与档案管...
    • 189 篇 工商管理
  • 231 篇 医学
    • 193 篇 临床医学
    • 171 篇 基础医学(可授医学...
    • 124 篇 药学(可授医学、理...
  • 145 篇 法学
    • 114 篇 社会学
  • 76 篇 经济学
  • 53 篇 农学
  • 50 篇 教育学
  • 15 篇 文学
  • 13 篇 军事学
  • 7 篇 艺术学
  • 1 篇 历史学

主题

  • 190 篇 semantics
  • 175 篇 feature extracti...
  • 155 篇 training
  • 144 篇 deep learning
  • 120 篇 computational mo...
  • 88 篇 data models
  • 87 篇 accuracy
  • 81 篇 machine learning
  • 78 篇 data mining
  • 76 篇 predictive model...
  • 74 篇 graph neural net...
  • 71 篇 task analysis
  • 67 篇 convolution
  • 58 篇 visualization
  • 54 篇 optimization
  • 53 篇 neural networks
  • 52 篇 conferences
  • 52 篇 image segmentati...
  • 52 篇 forecasting
  • 51 篇 contrastive lear...

机构

  • 109 篇 school of comput...
  • 107 篇 shenzhen researc...
  • 105 篇 national enginee...
  • 96 篇 school of comput...
  • 85 篇 school of big da...
  • 85 篇 school of comput...
  • 84 篇 guangdong key la...
  • 84 篇 department of el...
  • 75 篇 beijing advanced...
  • 72 篇 school of scienc...
  • 70 篇 school of big da...
  • 69 篇 school of comput...
  • 66 篇 peng cheng labor...
  • 66 篇 school of comput...
  • 59 篇 school of data a...
  • 57 篇 school of comput...
  • 53 篇 school of comput...
  • 51 篇 the department o...
  • 49 篇 state key labora...
  • 47 篇 gaoling school o...

作者

  • 112 篇 hai jin
  • 99 篇 jin hai
  • 97 篇 zhang rui
  • 47 篇 chen enhong
  • 47 篇 li haizhou
  • 47 篇 xia yong
  • 43 篇 liu qi
  • 39 篇 zhang yanning
  • 38 篇 zhu lipeng
  • 35 篇 liu jun
  • 35 篇 zhou pan
  • 34 篇 yin jian
  • 33 篇 xu xiaolong
  • 32 篇 wang meng
  • 30 篇 xiaofei liao
  • 29 篇 peng hao
  • 29 篇 liu yang
  • 27 篇 qi liu
  • 25 篇 li jianxin
  • 25 篇 shen linlin

语言

  • 4,630 篇 英文
  • 244 篇 其他
  • 40 篇 中文
  • 2 篇 德文
  • 2 篇 法文
检索条件"机构=School of Big Data and Computer Science"
4905 条 记 录,以下是161-170 订阅
排序:
Attention mechanism based multimodal feature fusion network for human action recognition
收藏 引用
Journal of Visual Communication and Image Representation 2025年 110卷
作者: Zhao, Xu Tang, Chao Hu, Huosheng Wang, Wenjian Qiao, Shuo Tong, Anyang School of Artificial Intelligence and Big Data Hefei University Hefei China School of Computer Science and Electronic Engineering University of Essex England ColchesterCO4 3SQ United Kingdom School of Computer and Information Technology Shanxi University Taiyuan China School of Computer Science and Information Engineering Hefei University of Technology Hefei China
Current human action recognition (HAR) methods focus on integrating multiple data modalities, such as skeleton data and RGB data. However, they struggle to exploit motion correlation information in skeleton data and r... 详细信息
来源: 评论
KAN-Face: Efficient Resource Usage and Precision Lip-Sync in Talking Head Generation
KAN-Face: Efficient Resource Usage and Precision Lip-Sync in...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Feng, Guanwen Jin, Siyu Qian, Zhihao Li, Yunan Miao, Qiguang School of Computer Science and Technology Xidian University Shaanxi Xi'an710071 China Xi'an Key Laboratory of Big Data and Intelligent Vision Xidian University Shaanxi Xi'an710071 China Key Laboratory of Collaborative Intelligence Systems Ministry of Education Xidian University Xi'an710071 China
Despite significant progress in NeRF-based talking head generation, problems like poor lip synchronization and inefficient resource usage remain. To solve these, we propose KAN-Face, a lightweight framework. In prepro... 详细信息
来源: 评论
Robust Multi-Object Tracking Using Vision Sensor with Fine-Grained Cues in Occluded and Dynamic Scenes
收藏 引用
IEEE Sensors Journal 2025年
作者: Hu, Yaoqi Sun, Jinqiu Jin, Hao Niu, Axi Yan, Qingsen Zhu, Yu Zhang, Yanning School of Computer Science China School of Astronautics China National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology Northwestern Polytechnical University Dongxiang Road Shaanxi Xi'an710129 China
Multi-object tracking (MOT) using vision sensors remains a challenging problem, particularly in dynamic backgrounds and severe occlusions. Existing methods, relying on holistic appearance or spatial cues, fail to capt... 详细信息
来源: 评论
FFCI: A Camera and IMU Sensors Based Multi-modal Neural Network for Activity Recognition in Smart Factory
收藏 引用
IEEE Transactions on Consumer Electronics 2025年
作者: Wang, Yujue Niu, Xin Lv, Xianwei Yu, Chen Huazhong University of Science and Technology National Engineering Research Center for Big Data Technology and System Services Computing Technology and System Lab Cluster and Grid Computing Lab School of Computer Science and Technology Wuhan430074 China
Worker activity recognition is an important aspect of the construction of smart factory. The development of deep neural networks and the widespread distribution of sensors in the smart factory have brought opportuniti... 详细信息
来源: 评论
Impulsive Control of Nonlinear Multi-Agent Systems: A Hybrid Fuzzy Adaptive and Event-Triggered Strategy
收藏 引用
IEEE Transactions on Fuzzy Systems 2025年
作者: Han, Fang Jin, Hai Huazhong University of Science and Technology National Engineering Research Center for Big Data Technology and System Services Computing Technology and System Laboratory Cluster and Grid Computing Laboratory School of Computer Science and Technology Wuhan430074 China
This paper presents a hybrid control approach that integrates an adaptive fuzzy mechanism with an event-triggered impulse strategy to address consensus control challenges in nonlinear Multi-Agent Systems (MASs) with u... 详细信息
来源: 评论
SPViT: Accelerate Vision Transformer Inference on Mobile Devices via Adaptive Splitting and Offloading
收藏 引用
IEEE Transactions on Mobile Computing 2025年
作者: Zhao, Sifan Liu, Tongtong Jin, Hai Yao, Dezhong Huazhong University of Science and Technology National Engineering Research Center for Big Data Technology and System Services Computing Technology and System Lab Cluster and Grid Computing Lab School of Computer Science and Technology Wuhan430074 China
The Vision Transformer (ViT), which benefits from utilizing self-attention mechanisms, has demonstrated superior accuracy compared to CNNs. However, due to the expensive computational costs, deploying and inferring Vi... 详细信息
来源: 评论
Channel Gain Map Estimation for Wireless Networks Based on Scatterer Model
收藏 引用
IEEE Transactions on Wireless Communications 2025年
作者: Sun, He Zhu, Lipeng Zhang, Rui National University of Singapore Department of Electrical and Computer Engineering 117583 Singapore The Chinese University of Hong Kong School of Science and Engineering Shenzhen Research Institute of Big Data Guangdong Shenzhen518172 China
Channel gain map (CGM) contains crucial large-scale fading information regarding wireless channels at specific frequency bands in wireless networks. Traditional CGM construction methods require either detailed propaga... 详细信息
来源: 评论
PFedLAH: Personalized Federated Learning with Lookahead for Adaptive Cross-modal Hashing
收藏 引用
IEEE Transactions on Circuits and Systems for Video Technology 2025年
作者: Chen, Yunfei Lin, Hongyu Yang, Zhan Long, Jun Central South University Big Data Institute School of Computer Science and Engineering ChangSha410000 China Central South University Dundee International Institute of Central South University Changsha410000 China
Cross-modal hashing enables efficient cross-modal retrieval by compressing multi-modal data into compact binary codes, but traditional methods primarily rely on centralized training, which is limited when handling lar... 详细信息
来源: 评论
Optimization-Inspired Graph Neural Network for Cellular Network Optimization
收藏 引用
IEEE Transactions on Mobile Computing 2025年
作者: He, Pengcheng Tang, Yijia Xu, Fan Shi, Qingjiang Tongji University School of Computer Science and Technology Shanghai China Shenzhen Research Institute of Big Data Shenzhen China Tongji University School of Software Engineering Shanghai China Tongji University School of Electronic and Information Engineering Shanghai China
The rapid development of wireless communications have driven the need for careful optimization of network parameters to improve network performance and reduce operational cost. Traditional methods, however, struggle w... 详细信息
来源: 评论
Wireless Semantic Communication Based on Probability Distribution: An Initial Work
Wireless Semantic Communication Based on Probability Distrib...
收藏 引用
IEEE Conference on Wireless Communications and Networking
作者: Qingxiang Luo Yashuang Guo Aoran Zheng Zhitong Ni F. Richard Yu Victor C.M. Leung School of Computer Science and Technology Beijing Jiaotong University Big Data Technologies Centre University of Technology Sydney Department of Systems and Computer Engineering Carleton University Department of Electrical and Computer Engineering The University of British Columbia
In the paper, we consider the general semantic transmission in wireless networks based on probability distribution. Firstly, we extract a multidimensional semantic probability distribution function, independent of any... 详细信息
来源: 评论