Real-time systems are widely implemented in the Internet of Things(IoT) and safety-critical systems, both of which have generated enormous social value. Aiming at the classic schedulability analysis problem in real-ti...
详细信息
Real-time systems are widely implemented in the Internet of Things(IoT) and safety-critical systems, both of which have generated enormous social value. Aiming at the classic schedulability analysis problem in real-time systems, we proposed an exact Boolean analysis based on interference(EBAI) for schedulability analysis in real-time systems. EBAI is based on worst-case interference time(WCIT), which considers both the release jitter and blocking time of the task. We improved the efficiency of the three existing tests and provided a comprehensive summary of related research results in the field. Abundant experiments were conducted to compare EBAI with other related results. Our evaluation showed that in certain cases, the runtime gain achieved using our analysis method may exceed 73% compared to the stateof-the-art schedulability test. Furthermore, the benefits obtained from our tests grew with the number of tasks, reaching a level suitable for practical application. EBAI is oriented to the five-tuple real-time task model with stronger expression ability and possesses a low runtime overhead. These characteristics make it applicable in various real-time systems such as spacecraft, autonomous vehicles, industrial robots, and traffic command systems.
Numerical simulation is employed to investigate the initial state of avalanche in polydisperse particle *** and propagation processes are illustrated for pentadisperse and triadisperse particle systems,*** these proce...
详细信息
Numerical simulation is employed to investigate the initial state of avalanche in polydisperse particle *** and propagation processes are illustrated for pentadisperse and triadisperse particle systems,*** these processes,particles involved in the avalanche grow slowly in the early stage and explosively in the later stage,which is clearly different from the continuous and steady growth trend in the monodisperse *** examining the avalanche propagation,the number growth of particles involved in the avalanche and the slope of the number growth,the initial state can be divided into three stages:T1(nucleation stage),T2(propagation stage),T3(overall avalanche stage).We focus on the characteristics of the avalanche in the T2 stage,and find that propagation distances increase almost linearly in both axial and radial directions in polydisperse *** also consider the distribution characteristics of the average coordination number and average velocity for the moving *** results support that the polydisperse particle systems are more stable in the T2 stage.
Partial-label learning(PLL) is a typical problem of weakly supervised learning, where each training instance is annotated with a set of candidate labels. Self-training PLL models achieve state-of-the-art performance b...
详细信息
Partial-label learning(PLL) is a typical problem of weakly supervised learning, where each training instance is annotated with a set of candidate labels. Self-training PLL models achieve state-of-the-art performance but suffer from error accumulation problems caused by mistakenly disambiguated instances. Although co-training can alleviate this issue by training two networks simultaneously and allowing them to interact with each other, most existing co-training methods train two structurally identical networks with the same task, i.e., are symmetric, rendering it insufficient for them to correct each other due to their similar limitations. Therefore, in this paper, we propose an asymmetric dual-task co-training PLL model called AsyCo,which forces its two networks, i.e., a disambiguation network and an auxiliary network, to learn from different views explicitly by optimizing distinct tasks. Specifically, the disambiguation network is trained with a self-training PLL task to learn label confidence, while the auxiliary network is trained in a supervised learning paradigm to learn from the noisy pairwise similarity labels that are constructed according to the learned label confidence. Finally, the error accumulation problem is mitigated via information distillation and confidence refinement. Extensive experiments on both uniform and instance-dependent partially labeled datasets demonstrate the effectiveness of AsyCo.
Finite element (FE) coupled thermal-mechanical analysis is widely used to predict the deformation and residualstress of wire arc additive manufacturing (WAAM) parts. In this study, an innovative single-layermulti-bead...
详细信息
Finite element (FE) coupled thermal-mechanical analysis is widely used to predict the deformation and residualstress of wire arc additive manufacturing (WAAM) parts. In this study, an innovative single-layermulti-bead profilegeometric modeling method through the isosceles trapezoid function is proposed to build the FE model of theWAAMprocess. Firstly, a straight-line model for overlapping beads based on the parabola function was establishedto calculate the optimal center distance. Then, the isosceles trapezoid-based profile was employed to replace theparabola profiles of the parabola-based overlapping model to establish an innovative isosceles trapezoid-basedmulti-bead overlapping geometric model. The rationality of the isosceles trapezoid-based overlapping model wasconfirmed by comparing the geometric deviation and the heat dissipation performance index of the two overlappingmodels. In addition, the FE-coupled thermal-mechanical analysis, as well as a comparative experiment of thesingle-layer eight-bead deposition process show that the simulation results of the above two models agree with theexperimental results. At the same time, the proposed isosceles trapezoid-based overlappingmodels are all straightlineprofiles, which can be divided into high-quality FE elements. It can improve the modeling efficiency andshorten the simulation calculation time. The innovative modeling method proposed in this study can provide anefficient and high-precision geometricmodelingmethod forWAAMpart FE coupled thermal-mechanical analysis.
This article presents the equilibrium analysis of a game composed of heterogeneous electric vehicles (EVs) and a power distribution system operator (DSO) as the players, and charging station operators (CSOs) and a tra...
详细信息
Global illumination(GI)plays a crucial role in rendering realistic results for virtual exhibitions,such as virtual car *** scenarios usually include all-frequency bidirectional reflectance distribution functions(BRDFs...
详细信息
Global illumination(GI)plays a crucial role in rendering realistic results for virtual exhibitions,such as virtual car *** scenarios usually include all-frequency bidirectional reflectance distribution functions(BRDFs),although their geometries and light configurations may be *** allfrequency BRDFs in real time remains challenging due to the complex light *** approaches,including precomputed radiance transfer,light probes,and the most recent path-tracing-based approaches(ReSTIR PT),cannot satisfy both quality and performance requirements ***,we propose a practical hybrid global illumination approach that combines ray tracing and cached GI by caching the incoming radiance with *** approach can produce results close to those of ofline renderers at the cost of only approximately 17 ms at runtime and is robust over all-frequency *** approach is designed for applications involving static lighting and geometries,such as virtual exhibitions.
This paper introduces a new network model - the Image Guidance Encoder-Decoder Model (IG-ED), designed to enhance the efficiency of image captioning and improve predictive accuracy. IG-ED, a fusion of the convolutiona...
详细信息
In this paper, an enhanced adaptive nonlinear extended state observer (EANESO) for single-input single-output pure feedback systems in the presence of external time-varying disturbances is proposed. In this paper, a n...
详细信息
In this paper, an enhanced adaptive nonlinear extended state observer (EANESO) for single-input single-output pure feedback systems in the presence of external time-varying disturbances is proposed. In this paper, a nonlinear system with matched and mismatched disturbances is considered. The conventional extended state observer (ESO) can only be applied to systems that are in the form of integral chains. Moreover, this method has limitations in the face of mismatched disturbances. In the presence of time-varying disturbances, the traditional ESOs cannot estimate the disturbances accurately. To overcome this limitation, an EANESO is proposed in this paper. The main idea is to design the nonlinear ESO (NESO) to estimate the states of the system and multiple disturbances simultaneously. The observer gains are considered time-varying and adjusted with adaptation laws to improve the estimation accuracy and overcome the peaking phenomenon. Next, the proposed controller is designed based on output feedback to eliminate the effects of multiple disturbances and stabilize the closed-loop system. Subsequently, the stability analysis of the closed-loop system and convergence of the observer error are discussed. Finally, the proposed method is applied to the inverted pendulum system. The simulated results show good performance of the proposed method as compared with a recently published scheme in the related literature.
The rapid development of the Internet has led to the widespread dissemination of manipulated facial images, significantly impacting people's daily lives. With the continuous advancement of Deepfake technology, the...
详细信息
The rapid development of the Internet has led to the widespread dissemination of manipulated facial images, significantly impacting people's daily lives. With the continuous advancement of Deepfake technology, the generated counterfeit facial images have become increasingly challenging to distinguish. There is an urgent need for a more robust and convincing detection method. Current detection methods mainly operate in the spatial domain and transform the spatial domain into other domains for analysis. With the emergence of transformers, some researchers have also combined traditional convolutional networks with transformers for detection. This paper explores the artifacts left by Deepfakes in various domains and, based on this exploration, proposes a detection method that utilizes the steganalysis rich model to extract high-frequency noise to complement spatial features. We have designed two main modules to fully leverage the interaction between these two aspects based on traditional convolutional neural networks. The first is the multi-scale mixed feature attention module, which introduces artifacts from high-frequency noise into spatial textures, thereby enhancing the model's learning of spatial texture features. The second is the multi-scale channel attention module, which reduces the impact of background noise by weighting the features. Our proposed method was experimentally evaluated on mainstream datasets, and a significant amount of experimental results demonstrate the effectiveness of our approach in detecting Deepfake forged faces, outperforming the majority of existing methods.
The behavior of users on online life service platforms like Meituan and Yelp often occurs within specific finegrained spatiotemporal contexts(i.e., when and where). Recommender systems, designed to serve millions of u...
详细信息
The behavior of users on online life service platforms like Meituan and Yelp often occurs within specific finegrained spatiotemporal contexts(i.e., when and where). Recommender systems, designed to serve millions of users, typically operate in a fully server-based manner, requiring on-device users to upload their behavioral data, including fine-grained spatiotemporal contexts, to the server, which has sparked public concern regarding privacy. Consequently, user devices only upload coarse-grained spatiotemporal contexts for user privacy protection. However, previous research mostly focuses on modeling fine-grained spatiotemporal contexts using knowledge graph convolutional models, which are not applicable to coarse-grained spatiotemporal contexts in privacy-constrained recommender systems. In this paper, we investigate privacy-preserving recommendation by leveraging coarse-grained spatiotemporal contexts. We propose the coarse-grained spatiotemporal knowledge graph for privacy-preserving recommendation(CSKG), which explicitly models spatiotemporal co-occurrences using common-sense knowledge from coarse-grained contexts. Specifically, we begin by constructing a spatiotemporal knowledge graph tailored to coarse-grained spatiotemporal contexts. Then we employ a learnable metagraph network that integrates common-sense information to filter and extract co-occurrences. CSKG evaluates the impact of coarsegrained spatiotemporal contexts on user behavior through the use of a knowledge graph convolutional network. Finally, we introduce joint learning to effectively learn representations. By conducting experiments on two real large-scale datasets,we achieve an average improvement of about 11.0% on two ranking metrics. The results clearly demonstrate that CSKG outperforms state-of-the-art baselines.
暂无评论