Graph processing has been widely used in many scenarios,from scientific computing to artificial *** processing exhibits irregular computational parallelism and random memory accesses,unlike traditional ***,running gra...
详细信息
Graph processing has been widely used in many scenarios,from scientific computing to artificial *** processing exhibits irregular computational parallelism and random memory accesses,unlike traditional ***,running graph processing workloads on conventional architectures(e.g.,CPUs and GPUs)often shows a significantly low compute-memory ratio with few performance benefits,which can be,in many cases,even slower than a specialized single-thread graph *** domain-specific hardware designs are essential for graph processing,it is still challenging to transform the hardware capability to performance boost without coupled software *** article presents a graph processing ecosystem from hardware to *** start by introducing a series of hardware accelerators as the foundation of this ***,the codesigned parallel graph systems and their distributed techniques are presented to support graph ***,we introduce our efforts on novel graph applications and hardware *** results show that various graph applications can be efficiently accelerated in this graph processing ecosystem.
A large number of Web APIs have been released as services in mobile communications,but the service provided by a single Web API is usually *** enrich the services in mobile communications,developers have combined Web ...
详细信息
A large number of Web APIs have been released as services in mobile communications,but the service provided by a single Web API is usually *** enrich the services in mobile communications,developers have combined Web APIs and developed a new service,which is known as a *** emergence of mashups greatly increases the number of services in mobile communications,especially in mobile networks and the Internet-of-Things(IoT),and has encouraged companies and individuals to develop even more mashups,which has led to the dramatic increase in the number of *** a trend brings with it big data,such as the massive text data from the mashups themselves and continually-generated usage ***,the question of how to determine the most suitable mashups from big data has become a challenging *** this paper,we propose a mashup recommendation framework from big data in mobile networks and the *** proposed framework is driven by machine learning techniques,including neural embedding,clustering,and matrix *** employ neural embedding to learn the distributed representation of mashups and propose to use cluster analysis to learn the relationship among the *** also develop a novel Joint Matrix Factorization(JMF)model to complete the mashup recommendation task,where we design a new objective function and an optimization *** then crawl through a real-world large mashup dataset and perform *** experimental results demonstrate that our framework achieves high accuracy in mashup recommendation and performs better than all compared baselines.
ChatGPT is a powerful artificial intelligence(AI)language model that has demonstrated significant improvements in various natural language processing(NLP) tasks. However, like any technology, it presents potential sec...
详细信息
ChatGPT is a powerful artificial intelligence(AI)language model that has demonstrated significant improvements in various natural language processing(NLP) tasks. However, like any technology, it presents potential security risks that need to be carefully evaluated and addressed. In this survey, we provide an overview of the current state of research on security of using ChatGPT, with aspects of bias, disinformation, ethics, misuse,attacks and privacy. We review and discuss the literature on these topics and highlight open research questions and future *** this survey, we aim to contribute to the academic discourse on AI security, enriching the understanding of potential risks and mitigations. We anticipate that this survey will be valuable for various stakeholders involved in AI development and usage, including AI researchers, developers, policy makers, and end-users.
With the arrival of the 5G era,wireless communication technologies and services are rapidly exhausting the limited spectrum *** auctions came into being,which can effectively utilize spectrum *** of the complexity of ...
详细信息
With the arrival of the 5G era,wireless communication technologies and services are rapidly exhausting the limited spectrum *** auctions came into being,which can effectively utilize spectrum *** of the complexity of the electronic spectrum auction network environment,the security of spectrum auction can not be *** scholars focus on researching the security of the single-sided auctions,while ignoring the practical scenario of a secure double spectrum auction where participants are composed of multiple sellers and *** begin to design the secure double spectrum auction mechanisms,in which two semi-honest agents are introduced to finish the spectrum auction *** these two agents may collude with each other or be bribed by buyers and sellers,which may create security risks,therefore,a secure double spectrum auction is proposed in this *** traditional secure double spectrum auctions,the spectrum auction server with Software Guard Extensions(SGX)component is used in this paper,which is an Ethereum blockchain platform that performs spectrum auctions.A secure double spectrum protocol is also designed,using SGX technology and cryptographic tools such as Paillier cryptosystem,stealth address technology and one-time ring signatures to well protect the private information of spectrum *** addition,the smart contracts provided by the Ethereum blockchain platform are executed to assist offline verification,and to verify important spectrum auction information to ensure the fairness and impartiality of spectrum ***,security analysis and performance evaluation of our protocol are discussed.
Federated Class-Incremental Learning (FCIL) aims to design privacy-preserving collaborative training methods to continuously learn new classes from distributed datasets. In these scenarios, federated clients face the ...
详细信息
With the rapid evolution of technology, the demand for mobile devices capable of executing computationally intensive and time-sensitive applications has surged. However, these devices are often constrained by limited ...
详细信息
In the evolving landscape of surveillance and security applications, the task of person re-identification(re-ID) has significant importance, but also presents notable difficulties. This task entails the process of acc...
详细信息
In the evolving landscape of surveillance and security applications, the task of person re-identification(re-ID) has significant importance, but also presents notable difficulties. This task entails the process of accurately matching and identifying persons across several camera views that do not overlap with one another. This is of utmost importance to video surveillance, public safety, and person-tracking applications. However, vision-related difficulties, such as variations in appearance, occlusions, viewpoint changes, cloth changes, scalability, limited robustness to environmental factors, and lack of generalizations, still hinder the development of reliable person re-ID methods. There are few approaches have been developed based on these difficulties relied on traditional deep-learning techniques. Nevertheless, recent advancements of transformer-based methods, have gained widespread adoption in various domains owing to their unique architectural properties. Recently, few transformer-based person re-ID methods have developed based on these difficulties and achieved good results. To develop reliable solutions for person re-ID, a comprehensive analysis of transformer-based methods is necessary. However, there are few studies that consider transformer-based techniques for further investigation. This review proposes recent literature on transformer-based approaches, examining their effectiveness, advantages, and potential challenges. This review is the first of its kind to provide insights into the revolutionary transformer-based methodologies used to tackle many obstacles in person re-ID, providing a forward-thinking outlook on current research and potentially guiding the creation of viable applications in real-world scenarios. The main objective is to provide a useful resource for academics and practitioners engaged in person re-ID. IEEE
The Internet of Things (IoT) is crucial in various sectors, making IoT networks prime targets for denial of service attacks. Detecting heavy hitters-primary sources of such attacks-is essential for network security. W...
详细信息
Vehicular data misuse may lead to traffic accidents and even loss of life,so it is crucial to achieve secure vehicular data *** paper focuses on secure vehicular data communications in the Named Data Networking(NDN).I...
详细信息
Vehicular data misuse may lead to traffic accidents and even loss of life,so it is crucial to achieve secure vehicular data *** paper focuses on secure vehicular data communications in the Named Data Networking(NDN).In NDN,names,provider IDs and data are transmitted in plaintext,which exposes vehicular data to security threats and leads to considerable data communication costs and failure *** paper proposes a Secure vehicular Data Communication(SDC)approach in NDN to supress data communication costs and failure *** constructs a vehicular backbone to reduce the number of authenticated nodes involved in reverse *** the ciphtertext of the name and data is included in the signed Interest and Data and transmitted along the backbone,so the secure data communications are *** is evaluated,and the data results demonstrate that SCD achieves the above objectives.
With the continuous growth of the population, crowd counting plays a crucial role in intelligent monitoring systems for the Internet of Things (IoT) and smart city development. Accurate monitoring of crowd density not...
详细信息
暂无评论