The increase in air pollutants and its adverse effects on human health and the environment has raised significant concerns. This implies the necessity of predicting air pollutant levels. Numerous studies have aimed to...
详细信息
With the recent advances in the field of deep learning, an increasing number of deep neural networks have been applied to business process prediction tasks, remaining time prediction, to obtain more accurate predictiv...
详细信息
With the recent advances in the field of deep learning, an increasing number of deep neural networks have been applied to business process prediction tasks, remaining time prediction, to obtain more accurate predictive results. However, existing time prediction methods based on deep learning have poor interpretability, an explainable business process remaining time prediction method is proposed using reachability graph,which consists of prediction model construction and visualization. For prediction models, a Petri net is mined and the reachability graph is constructed to obtain the transition occurrence vector. Then, prefixes and corresponding suffixes are generated to cluster into different transition partitions according to transition occurrence vector. Next,the bidirectional recurrent neural network with attention is applied to each transition partition to encode the prefixes, and the deep transfer learning between different transition partitions is performed. For the visualization of prediction models, the evaluation values are added to the sub-processes of a Petri net to realize the visualization of the prediction models. Finally, the proposed method is validated by publicly available event logs.
Long-term urban traffic flow prediction is an important task in the field of intelligent transportation,as it can help optimize traffic management and improve travel *** improve prediction accuracy,a crucial issue is ...
详细信息
Long-term urban traffic flow prediction is an important task in the field of intelligent transportation,as it can help optimize traffic management and improve travel *** improve prediction accuracy,a crucial issue is how to model spatiotemporal dependency in urban traffic *** recent years,many studies have adopted spatiotemporal neural networks to extract key information from traffic ***,most models ignore the semantic spatial similarity between long-distance areas when mining spatial *** also ignore the impact of predicted time steps on the next unpredicted time step for making long-term ***,these models lack a comprehensive data embedding process to represent complex spatiotemporal *** paper proposes a multi-scale persistent spatiotemporal transformer(MSPSTT)model to perform accurate long-term traffic flow prediction in *** adopts an encoder-decoder structure and incorporates temporal,periodic,and spatial features to fully embed urban traffic data to address these *** model consists of a spatiotemporal encoder and a spatiotemporal decoder,which rely on temporal,geospatial,and semantic space multi-head attention modules to dynamically extract temporal,geospatial,and semantic *** spatiotemporal decoder combines the context information provided by the encoder,integrates the predicted time step information,and is iteratively updated to learn the correlation between different time steps in the broader time range to improve the model’s accuracy for long-term *** on four public transportation datasets demonstrate that MSPSTT outperforms the existing models by up to 9.5%on three common metrics.
The Internet of Things(loT)has grown rapidly due to artificial intelligence driven edge *** enabling many new functions,edge computing devices expand the vulnerability surface and have become the target of malware ***...
详细信息
The Internet of Things(loT)has grown rapidly due to artificial intelligence driven edge *** enabling many new functions,edge computing devices expand the vulnerability surface and have become the target of malware ***,attackers have used advanced techniques to evade defenses by transforming their malware into functionality-preserving *** systematically analyze such evasion attacks and conduct a large-scale empirical study in this paper to evaluate their impact on *** specifically,we focus on two forms of evasion attacks:obfuscation and adversarial *** the best of our knowledge,this paper is the first to investigate and contrast the two families of evasion attacks *** apply 10 obfuscation attacks and 9 adversarial attacks to 2870 malware *** obtained findings are as follows.(1)Commercial Off-The-Shelf(COTS)malware detectors are vulnerable to evasion attacks.(2)Adversarial attacks affect COTS malware detectors slightly more effectively than obfuscated malware examples.(3)Code similarity detection approaches can be affected by obfuscated examples and are barely affected by adversarial attacks.(4)These attacks can preserve the functionality of original malware examples.
Current automatic segment extraction techniques for identifying target characters in videos have several limitations, including low accuracy, slow processing speeds, and poor adaptability to diverse scenes. This paper...
详细信息
The current urban intelligent transportation is in a rapid development stage, and coherence control of vehicle formations has important implications in urban intelligent transportation research. This article focuses o...
详细信息
SaaS (Software-as-a-Service) is a service model provided by cloud computing. It has a high requirement for QoS (Quality of Software) due to its method of providing software service. However, manual identification and ...
详细信息
SaaS (Software-as-a-Service) is a service model provided by cloud computing. It has a high requirement for QoS (Quality of Software) due to its method of providing software service. However, manual identification and diagnosis for performance issues is typically expensive and laborious because of the complexity of the application software and the dynamic nature of the deployment environment. Recently, substantial research efforts have been devoted to automatically identifying and diagnosing performance issues of SaaS software. In this survey, we comprehensively review the different methods about automatically identifying and diagnosing performance issues of SaaS software. We divide them into three steps according to their function: performance log generation, performance issue identification and performance issue diagnosis. We then comprehensively review these methods by their development history. Meanwhile, we give our proposed solution for each step. Finally, the effectiveness of our proposed methods is shown by experiments.
The nonlinear filtering problem has enduringly been an active research topic in both academia and industry due to its ever-growing theoretical importance and practical *** main objective of nonlinear filtering is to i...
详细信息
The nonlinear filtering problem has enduringly been an active research topic in both academia and industry due to its ever-growing theoretical importance and practical *** main objective of nonlinear filtering is to infer the states of a nonlinear dynamical system of interest based on the available noisy measurements. In recent years, the advance of network communication technology has not only popularized the networked systems with apparent advantages in terms of installation,cost and maintenance, but also brought about a series of challenges to the design of nonlinear filtering algorithms, among which the communication constraint has been recognized as a dominating concern. In this context, a great number of investigations have been launched towards the networked nonlinear filtering problem with communication constraints, and many samplebased nonlinear filters have been developed to deal with the highly nonlinear and/or non-Gaussian scenarios. The aim of this paper is to provide a timely survey about the recent advances on the sample-based networked nonlinear filtering problem from the perspective of communication constraints. More specifically, we first review three important families of sample-based filtering methods known as the unscented Kalman filter, particle filter,and maximum correntropy filter. Then, the latest developments are surveyed with stress on the topics regarding incomplete/imperfect information, limited resources and cyber ***, several challenges and open problems are highlighted to shed some lights on the possible trends of future research in this realm.
We developed a plasmonic refractive index(RI)with a metal-dielectric-metal(MDM)structure that utilizes two Persian Orsi windows-like separated cavities with a high figure of merit(FoM)and *** simulated and optimized A...
详细信息
We developed a plasmonic refractive index(RI)with a metal-dielectric-metal(MDM)structure that utilizes two Persian Orsi windows-like separated cavities with a high figure of merit(FoM)and *** simulated and optimized Ag-air-Ag MDM sensor for surface plasmon resonance(SPR)offers high RI sensitivity(SRI)and the ability to detect blood plasma concentration(BPC).The results verified that structural parameters have an effect on SRI,full width at half maximum(FWHM),FoM,sensitivity of blood plasma(S_(p))for right and left peaks,whose values are 1345.45 nm·RIU^(−1),32 nm,42.04 RIU^(−1),0.26 and 0.19 nm·L·g^(-1),*** proposed design opens a new horizon in sensor development.
Demand forecasting has emerged as a crucial element in supply chain management. It is essential to identify anomalous data and continuously improve the forecasting model with new data. However, existing literature fai...
详细信息
暂无评论