Semantic segmentation is an important sub-task for many ***,pixel-level ground-truth labeling is costly,and there is a tendency to overfit to training data,thereby limiting the generalization *** domain adaptation can...
详细信息
Semantic segmentation is an important sub-task for many ***,pixel-level ground-truth labeling is costly,and there is a tendency to overfit to training data,thereby limiting the generalization *** domain adaptation can potentially address these problems by allowing systems trained on labelled datasets from the source domain(including less expensive synthetic domain)to be adapted to a novel target *** conventional approach involves automatic extraction and alignment of the representations of source and target domains *** limitation of this approach is that it tends to neglect the differences between classes:representations of certain classes can be more easily extracted and aligned between the source and target domains than others,limiting the adaptation over all ***,we address:this problem by introducing a Class-Conditional Domain Adaptation(CCDA)*** incorporates a class-conditional multi-scale discriminator and class-conditional losses for both segmentation and ***,they measure the segmentation,shift the domain in a classconditional manner,and equalize the loss over *** results demonstrate that the performance of our CCDA method matches,and in some cases,surpasses that of state-of-the-art methods.
As one of the most representative recommendation solutions, traditional collaborative filtering (CF) models typically have limitations in dealing with large-scale, sparse data to capture complex relationships between ...
详细信息
ChatGPT, an advanced language model powered by artificial intelligence, has emerged as a transformative tool in the field of education. This article explores the potential of ChatGPT in revolutionizing learning and co...
详细信息
Collaborative inference(co-inference) accelerates deep neural network inference via extracting representations at the device and making predictions at the edge server, which however might disclose the sensitive inform...
详细信息
Collaborative inference(co-inference) accelerates deep neural network inference via extracting representations at the device and making predictions at the edge server, which however might disclose the sensitive information about private attributes of users(e.g.,race). Although many privacy-preserving mechanisms on co-inference have been proposed to eliminate privacy concerns, privacy leakage of sensitive attributes might still happen during inference. In this paper, we explore privacy leakage against the privacy-preserving co-inference by decoding the uploaded representations into a vulnerable form. We propose a novel attack framework named AttrL eaks, which consists of the shadow model of feature extractor(FE), the susceptibility reconstruction decoder,and the private attribute classifier. Based on our observation that values in inner layers of FE(internal representation) are more sensitive to attack, the shadow model is proposed to simulate the FE of the victim in the blackbox scenario and generates the internal ***, the susceptibility reconstruction decoder is designed to transform the uploaded representations of the victim into the vulnerable form, which enables the malicious classifier to easily predict the private attributes. Extensive experimental results demonstrate that AttrLeaks outperforms the state of the art in terms of attack success rate.
This paper mainly discusses two kinds of coupled reaction-diffusion neural networks (CRNN) under topology attacks, that is, the cases with multistate couplings and with multiple spatial-diffusion couplings. On one han...
详细信息
This paper presents a photonic scheme for generating multi-format, multi-band, and reconfigurable microwave photonic signals through cascaded external modulation. The proposed system utilize dual-parallel Mach–Zehnde...
详细信息
Rapid and precise magnitude estimation is critical for effective earthquake early warning systems and other seismic applications. This study introduces a novel deep learning-based approach for magnitude estimation tha...
详细信息
Plant diseases significantly threaten global food security and economic stability by reducing crop yields, increasing production costs, and exacerbating food shortages. Early and precise detection of plant diseases is...
详细信息
Recently, single-image SVBRDF capture is formulated as a regression problem, which uses a network to infer four SVBRDF maps from a flash-lit image. However, the accuracy is still not satisfactory since previous approa...
详细信息
Recently, single-image SVBRDF capture is formulated as a regression problem, which uses a network to infer four SVBRDF maps from a flash-lit image. However, the accuracy is still not satisfactory since previous approaches usually adopt endto-end inference strategies. To mitigate the challenge, we propose “auxiliary renderings” as the intermediate regression targets, through which we divide the original end-to-end regression task into several easier sub-tasks, thus achieving better inference accuracy. Our contributions are threefold. First, we design three (or two pairs of) auxiliary renderings and summarize the motivations behind the designs. By our design, the auxiliary images are bumpiness-flattened or highlight-removed, containing disentangled visual cues about the final SVBRDF maps and can be easily transformed to the final maps. Second, to help estimate the auxiliary targets from the input image, we propose two mask images including a bumpiness mask and a highlight mask. Our method thus first infers mask images, then with the help of the mask images infers auxiliary renderings, and finally transforms the auxiliary images to SVBRDF maps. Third, we propose backbone UNets to infer mask images, and gated deformable UNets for estimating auxiliary targets. Thanks to the well designed networks and intermediate images, our method outputs better SVBRDF maps than previous approaches, validated by the extensive comparisonal and ablation experiments. IEEE
暂无评论