The increasing dependence on smartphones with advanced sensors has highlighted the imperative of precise transportation mode classification, pivotal for domains like health monitoring and urban planning. This research...
详细信息
The increasing dependence on smartphones with advanced sensors has highlighted the imperative of precise transportation mode classification, pivotal for domains like health monitoring and urban planning. This research is motivated by the pressing demand to enhance transportation mode classification, leveraging the potential of smartphone sensors, notably the accelerometer, magnetometer, and gyroscope. In response to this challenge, we present a novel automated classification model rooted in deep reinforcement learning. Our model stands out for its innovative approach of harnessing enhanced features through artificial neural networks (ANNs) and visualizing the classification task as a structured series of decision-making events. Our model adopts an improved differential evolution (DE) algorithm for initializing weights, coupled with a specialized agent-environment relationship. Every correct classification earns the agent a reward, with additional emphasis on the accurate categorization of less frequent modes through a distinct reward strategy. The Upper Confidence Bound (UCB) technique is used for action selection, promoting deep-seated knowledge, and minimizing reliance on chance. A notable innovation in our work is the introduction of a cluster-centric mutation operation within the DE algorithm. This operation strategically identifies optimal clusters in the current DE population and forges potential solutions using a pioneering update mechanism. When assessed on the extensive HTC dataset, which includes 8311 hours of data gathered from 224 participants over two years. Noteworthy results spotlight an accuracy of 0.88±0.03 and an F-measure of 0.87±0.02, underscoring the efficacy of our approach for large-scale transportation mode classification tasks. This work introduces an innovative strategy in the realm of transportation mode classification, emphasizing both precision and reliability, addressing the pressing need for enhanced classification mechanisms in an eve
Instance co-segmentation aims to segment the co-occurrent instances among two *** task heavily relies on instance-related cues provided by co-peaks,which are generally estimated by exhaustively exploiting all paired c...
详细信息
Instance co-segmentation aims to segment the co-occurrent instances among two *** task heavily relies on instance-related cues provided by co-peaks,which are generally estimated by exhaustively exploiting all paired candidates in point-to-point ***,such patterns could yield a high number of false-positive co-peaks,resulting in over-segmentation whenever there are mutual *** tackle with this issue,this paper proposes an instance co-segmentation method via tensor-based salient co-peak search(TSCPS-ICS).The proposed method explores high-order correlations via triple-to-triple matching among feature maps to find reliable co-peaks with the help of co-saliency *** proposed method is shown to capture more accurate intra-peaks and inter-peaks among feature maps,reducing the false-positive rate of co-peak *** having accurate co-peaks,one can efficiently infer responses of the targeted *** on four benchmark datasets validate the superior performance of the proposed method.
The growing global population and reduced blood donations due to COVID-19 necessitate efficient management and pricing strategies for red blood cells (RBCs). Pricing mechanisms must address the perishable nature of RB...
详细信息
Data race is one of the most important concurrent anomalies in multi-threaded *** con-straint-based techniques are leveraged into race detection,which is able to find all the races that can be found by any oth-er soun...
详细信息
Data race is one of the most important concurrent anomalies in multi-threaded *** con-straint-based techniques are leveraged into race detection,which is able to find all the races that can be found by any oth-er sound race ***,this constraint-based approach has serious limitations on helping programmers analyze and understand data ***,it may report a large number of false positives due to the unrecognized dataflow propa-gation of the ***,it recommends a wide range of thread context switches to schedule the reported race(in-cluding the false one)whenever this race is exposed during the constraint-solving *** ad hoc recommendation imposes too many context switches,which complicates the data race *** address these two limitations in the state-of-the-art constraint-based race detection,this paper proposes DFTracker,an improved constraint-based race detec-tor to recommend each data race with minimal thread context ***,we reduce the false positives by ana-lyzing and tracking the dataflow in the *** this means,DFTracker thus reduces the unnecessary analysis of false race *** further propose a novel algorithm to recommend an effective race schedule with minimal thread con-text switches for each data *** experimental results on the real applications demonstrate that 1)without removing any true data race,DFTracker effectively prunes false positives by 68%in comparison with the state-of-the-art constraint-based race detector;2)DFTracker recommends as low as 2.6-8.3(4.7 on average)thread context switches per data race in the real world,which is 81.6%fewer context switches per data race than the state-of-the-art constraint based race ***,DFTracker can be used as an effective tool to understand the data race for programmers.
State-of-the-art recommender systems are increasingly focused on optimizing implementation efficiency, such as enabling on-device recommendations under memory constraints. Current methods commonly use lightweight embe...
详细信息
State-of-the-art recommender systems are increasingly focused on optimizing implementation efficiency, such as enabling on-device recommendations under memory constraints. Current methods commonly use lightweight embeddings for users and items or employ compact embeddings to enhance reusability and reduce memory usage. However, these approaches consider only the coarse-grained aspects of embeddings, overlooking subtle semantic nuances. This limitation results in an adversarial degradation of meta-embedding performance, impeding the system's ability to capture intricate relationships between users and items, leading to suboptimal recommendations. To address this, we propose a novel approach to efficiently learn meta-embeddings with varying grained and apply fine-grained meta-embeddings to strengthen the representation of their coarse-grained counterparts. Specifically, we introduce a recommender system based on a graph neural network, where each user and item is represented as a node. These nodes are directly connected to coarse-grained virtual nodes and indirectly linked to fine-grained virtual nodes, facilitating learning of multi-grained semantics. Fine-grained semantics are captured through sparse meta-embeddings, which dynamically balance embedding uniqueness and memory constraints. To ensure their sparseness, we rely on initialization methods such as sparse principal component analysis combined with a soft thresholding activation function. Moreover, we propose a weight-bridging update strategy that aligns coarse-grained meta-embedding with several fine-grained meta-embeddings based on the underlying semantic properties of users and items. Comprehensive experiments demonstrate that our method outperforms existing baselines. The code of our proposal is available at https://***/htyjers/C2F-MetaEmbed.
Emotion recognition plays a crucial role in various fields and is a key task in natural language processing (NLP). The objective is to identify and interpret emotional expressions in text. However, traditional emotion...
详细信息
Emotion recognition plays a crucial role in various fields and is a key task in natural language processing (NLP). The objective is to identify and interpret emotional expressions in text. However, traditional emotion recognition approaches often struggle in few-shot cross-domain scenarios due to their limited capacity to generalize semantic features across different domains. Additionally, these methods face challenges in accurately capturing complex emotional states, particularly those that are subtle or implicit. To overcome these limitations, we introduce a novel approach called Dual-Task Contrastive Meta-Learning (DTCML). This method combines meta-learning and contrastive learning to improve emotion recognition. Meta-learning enhances the model’s ability to generalize to new emotional tasks, while instance contrastive learning further refines the model by distinguishing unique features within each category, enabling it to better differentiate complex emotional expressions. Prototype contrastive learning, in turn, helps the model address the semantic complexity of emotions across different domains, enabling the model to learn fine-grained emotions expression. By leveraging dual tasks, DTCML learns from two domains simultaneously, the model is encouraged to learn more diverse and generalizable emotions features, thereby improving its cross-domain adaptability and robustness, and enhancing its generalization ability. We evaluated the performance of DTCML across four cross-domain settings, and the results show that our method outperforms the best baseline by 5.88%, 12.04%, 8.49%, and 8.40% in terms of accuracy.
Image-guided surgery (IGS) has become one of the most practical, safest, and fastest procedures. One of its most crucial requirements is having high-quality, high-speed CT images during operation. This achievement has...
详细信息
In high-risk industrial environments like nuclear power plants, precise defect identification and localization are essential for maintaining production stability and safety. However, the complexity of such a harsh env...
详细信息
In high-risk industrial environments like nuclear power plants, precise defect identification and localization are essential for maintaining production stability and safety. However, the complexity of such a harsh environment leads to significant variations in the shape and size of the defects. To address this challenge, we propose the multivariate time series segmentation network(MSSN), which adopts a multiscale convolutional network with multi-stage and depth-separable convolutions for efficient feature extraction through variable-length templates. To tackle the classification difficulty caused by structural signal variance, MSSN employs logarithmic normalization to adjust instance distributions. Furthermore, it integrates classification with smoothing loss functions to accurately identify defect segments amid similar structural and defect signal subsequences. Our algorithm evaluated on both the Mackey-Glass dataset and industrial dataset achieves over 95% localization and demonstrates the capture capability on the synthetic dataset. In a nuclear plant's heat transfer tube dataset, it captures 90% of defect instances with75% middle localization F1 score.
Recently,Generative Adversarial Networks(GANs)have become the mainstream text-to-image(T2I)***,a standard normal distribution noise of inputs cannot provide sufficient information to synthesize an image that approache...
详细信息
Recently,Generative Adversarial Networks(GANs)have become the mainstream text-to-image(T2I)***,a standard normal distribution noise of inputs cannot provide sufficient information to synthesize an image that approaches the ground-truth image ***,the multistage generation strategy results in complex T2I ***,this study proposes a novel feature-grounded single-stage T2I model,which considers the“real”distribution learned from training images as one input and introduces a worst-case-optimized similarity measure into the loss function to enhance the model's generation *** results on two benchmark datasets demonstrate the competitive performance of the proposed model in terms of the Frechet inception distance and inception score compared to those of some classical and state-of-the-art models,showing the improved similarities among the generated image,text,and ground truth.
Over-the-air computation(AirComp)enables federated learning(FL)to rapidly aggregate local models at the central server using waveform superposition property of wireless *** this paper,a robust transmission scheme for ...
详细信息
Over-the-air computation(AirComp)enables federated learning(FL)to rapidly aggregate local models at the central server using waveform superposition property of wireless *** this paper,a robust transmission scheme for an AirCompbased FL system with imperfect channel state information(CSI)is *** model CSI uncertainty,an expectation-based error model is *** main objective is to maximize the number of selected devices that meet mean-squared error(MSE)requirements for model broadcast and model *** problem is formulated as a combinatorial optimization problem and is solved in two ***,the priority order of devices is determined by a sparsity-inducing ***,a feasibility detection scheme is used to select the maximum number of devices to guarantee that the MSE requirements are *** alternating optimization(AO)scheme is used to transform the resulting nonconvex problem into two convex *** results illustrate the effectiveness and robustness of the proposed scheme.
暂无评论