Power is an issue that must be considered in the design of logic circuits. Power optimization is a combinatorial optimization problem, since it is necessary to search for a logical expression that consumes the least a...
详细信息
Power is an issue that must be considered in the design of logic circuits. Power optimization is a combinatorial optimization problem, since it is necessary to search for a logical expression that consumes the least amount of power from a large number of Reed-Muller(RM) logical expressions. The existing approach for optimizing the power of multi-output mixed polarity RM(MPRM) logic circuits suffer from poor optimization results. To solve this problem, a whale optimization algorithm with two-populations strategy and mutation strategy(TMWOA) is proposed in this paper. The two-populations strategy speeds up the convergence of the algorithm by exchanging information about the two-populations. The mutation strategy enhances the ability of the algorithm to jump out of the local optimal solutions by using the information of the current optimal solution. Based on the TMWOA, we propose a multi-output MPRM logic circuits power optimization approach(TMMPOA). Experiments based on the benchmark circuits of the Microelectronics Center of North Carolina(MCNC) validate the effectiveness and superiority of the proposed TMMPOA.
This paper introduces a novel local fine-grained visual tracking task, aiming to precisely locate arbitrary local parts of objects. This task is motivated by our observation that in many realistic scenarios, the user ...
详细信息
Large models have recently played a dominant role in natural language processing and multimodal vision-language learning. However, their effectiveness in text-related visual tasks remains relatively unexplored. In thi...
详细信息
Large models have recently played a dominant role in natural language processing and multimodal vision-language learning. However, their effectiveness in text-related visual tasks remains relatively unexplored. In this paper, we conducted a comprehensive evaluation of large multimodal models, such as GPT4V and Gemini, in various text-related visual tasks including text recognition, scene text-centric visual question answering(VQA), document-oriented VQA, key information extraction(KIE), and handwritten mathematical expression recognition(HMER). To facilitate the assessment of optical character recognition(OCR) capabilities in large multimodal models, we propose OCRBench, a comprehensive evaluation benchmark. OCRBench contains 29 datasets, making it the most comprehensive OCR evaluation benchmark available. Furthermore, our study reveals both the strengths and weaknesses of these models, particularly in handling multilingual text, handwritten text, non-semantic text, and mathematical expression *** importantly, the baseline results presented in this study could provide a foundational framework for the conception and assessment of innovative strategies targeted at enhancing zero-shot multimodal *** evaluation pipeline and benchmark are available at https://***/Yuliang-Liu/Multimodal OCR.
Unmanned and aerial systems as interactors among different system components for communications,have opened up great opportunities for truth data discovery in Mobile Crowd Sensing(MCS)which has not been properly solve...
详细信息
Unmanned and aerial systems as interactors among different system components for communications,have opened up great opportunities for truth data discovery in Mobile Crowd Sensing(MCS)which has not been properly solved in the *** this paper,an Unmanned Aerial Vehicles-supported Intelligent Truth Discovery(UAV-ITD)scheme is proposed to obtain truth data at low-cost communications for *** main innovations of the UAV-ITD scheme are as follows:(1)UAV-ITD scheme takes the first step in employing UAV joint Deep Matrix Factorization(DMF)to discover truth data based on the trust mechanism for an information Elicitation Without Verification(IEWV)problem in MCS.(2)This paper introduces a truth data discovery scheme for the first time that only needs to collect a part of n data samples to infer the data of the entire network with high accuracy,which saves more communication costs than most previous data collection schemes,where they collect n or kn data ***,we conducted extensive experiments to evaluate the UAV-ITD *** results show that compared with previous schemes,our scheme can reduce estimated truth error by 52.25%–96.09%,increase the accuracy of workers’trust evaluation by 0.68–61.82 times,and save recruitment costs by 24.08%–54.15%in truth data discovery.
In the industrial production of medical syringes, existing Deep Semantic Segmentation (DSS) methods, which generally have numerous network parameters, face significant challenges in real-time hair defect detection due...
详细信息
The methods of network attacks have become increasingly sophisticated,rendering traditional cybersecurity defense mechanisms insufficient to address novel and complex threats *** recent years,artificial intelligence h...
详细信息
The methods of network attacks have become increasingly sophisticated,rendering traditional cybersecurity defense mechanisms insufficient to address novel and complex threats *** recent years,artificial intelligence has achieved significant progress in the field of network ***,many challenges and issues remain,particularly regarding the interpretability of deep learning and ensemble learning *** address the challenge of enhancing the interpretability of network attack prediction models,this paper proposes a method that combines Light Gradient Boosting Machine(LGBM)and SHapley Additive exPlanations(SHAP).LGBM is employed to model anomalous fluctuations in various network indicators,enabling the rapid and accurate identification and prediction of potential network attack types,thereby facilitating the implementation of timely defense measures,the model achieved an accuracy of 0.977,precision of 0.985,recall of 0.975,and an F1 score of 0.979,demonstrating better performance compared to other models in the domain of network attack *** is utilized to analyze the black-box decision-making process of the model,providing interpretability by quantifying the contribution of each feature to the prediction results and elucidating the relationships between *** experimental results demonstrate that the network attack predictionmodel based on LGBM exhibits superior accuracy and outstanding predictive ***,the SHAP-based interpretability analysis significantly improves the model’s transparency and interpretability.
WiFi-based indoor positioning has emerged as a crucial technology for enabling smart consumer electronic applications, particularly in large-scale buildings. The construction of WiFi fingerprint databases using receiv...
详细信息
Due to its decentralized and tamper-proof features, blockchain is frequently employed in the financial, traceability, and distributed storage industries. The agreement algorithm, which is a crucial component of the bl...
详细信息
Non-intrusive load monitoring (NILM) has become a widely used approach to monitor energy consumption by installing monitoring equipment at the power supply entrance. However, the accuracy of traditional deep neural ne...
详细信息
The manual process of evaluating answer scripts is strenuous. Evaluators use the answer key to assess the answers in the answer scripts. Advancements in technology and the introduction of new learning paradigms need a...
详细信息
暂无评论