Multi-document summarising (MDS) is a helpful method for information aggregation that creates a clear and informative summary from a collection of papers linked to the same subject. Due to the significant number of in...
详细信息
Deep neural networks (DNNs) are crucial in autonomous driving systems (ADSs) for tasks like steering control, but model inaccuracies, biased training data, and incorrect runtime parameters can compromise their reliabi...
详细信息
Deep neural networks (DNNs) are crucial in autonomous driving systems (ADSs) for tasks like steering control, but model inaccuracies, biased training data, and incorrect runtime parameters can compromise their reliability. Metamorphic testing (MT) enhances reliability by generating follow-up tests from mutated DNN source inputs, identifying inconsistencies as defects. Various MT techniques for ADSs include generative/transfer models, neuron-based coverage maximization, and adaptive test selection. Despite these efforts, significant challenges remain, including the ambiguity of neuron coverage’s correlation with misbehaviour detection, a lack of focus on DNN critical pathways, inadequate use of search-based methods, and the absence of an integrated method that effectively selects sources and generates follow-ups. This paper addresses such challenges by introducing DeepDomain, a grey-box multi-objective test generation approach for DNN models. It involves adaptively selecting diverse source inputs and generating domain-oriented follow-up tests. Such follow-ups explore critical pathways, extracted by neuron contribution, with broader coverage compared to their source tests (inter-behavioural domain) and attaining high neural boundary coverage of the misbehaviour regions detected in previous follow-ups (intra-behavioural domain). An empirical evaluation of the proposed approach on three DNN models used in the Udacity self-driving car challenge, and 18 different MRs demonstrates that relying on behavioural domain adequacy is a more reliable indicator than coverage criteria for effectively guiding the testing of DNNs. Additionally, DeepDomain significantly outperforms selected baselines in misbehaviour detection by up to 94 times, fault-revealing capability by up to 79%, output diversity by 71%, corner-case detection by up to 187 times, identification of robustness subdomains of MRs by up to 33 percentage points, and naturalness by two times. The results confirm that stat
Matroid theory has been developed to be a mature branch of mathematics and has extensive applications in combinatorial optimization,algorithm design and so *** the other hand,quantum computing has attracted much atten...
详细信息
Matroid theory has been developed to be a mature branch of mathematics and has extensive applications in combinatorial optimization,algorithm design and so *** the other hand,quantum computing has attracted much attention and has been shown to surpass classical computing on solving some computational ***,crossover studies of the two fields seem to be missing in the *** paper initiates the study of quantum algorithms for matroid property *** is shown that quadratic quantum speedup is possible for the calculation problem of finding the girth or the number of circuits(bases,flats,hyperplanes)of a matroid,and for the decision problem of deciding whether a matroid is uniform or Eulerian,by giving a uniform lower boundΩ■on the query complexity of all these *** the other hand,for the uniform matroid decision problem,an asymptotically optimal quantum algorithm is proposed which achieves the lower bound,and for the girth problem,an almost optimal quantum algorithm is given with query complexityO■.In addition,for the paving matroid decision problem,a lower boundΩ■on the query complexity is obtained,and an O■ quantum algorithm is presented.
The advancement of computer vision and surveillance devices has underscored the significance of safeguarding privacy in facial images and videos, necessitating the development of effective face de-identification metho...
详细信息
Mobile networks possess significant information and thus are considered a gold mine for the researcher’s *** call detail records(CDR)of a mobile network are used to identify the network’s efficacy and the mobile use...
详细信息
Mobile networks possess significant information and thus are considered a gold mine for the researcher’s *** call detail records(CDR)of a mobile network are used to identify the network’s efficacy and the mobile user’s *** is evident from the recent literature that cyber-physical systems(CPS)were used in the analytics and modeling of telecom *** addition,CPS is used to provide valuable services in smart *** general,a typical telecom company hasmillions of subscribers and thus generatesmassive amounts of *** this aspect,data storage,analysis,and processing are the key *** solve these issues,herein we propose a multilevel cyber-physical social system(CPSS)for the analysis and modeling of large internet *** proposed multilevel system has three levels and each level has a specific ***,raw Call Detail Data(CDR)was collected at the first ***,the data preprocessing,cleaning,and error removal operations were *** the second level,data processing,cleaning,reduction,integration,processing,and storage were ***,suggested internet activity record measures were *** proposed system initially constructs a graph and then performs network *** proposed CPSS system accurately identifies different areas of internet peak usage in a city(Milan city).Our research is helpful for the network operators to plan effective network configuration,management,and optimization of resources.
By leveraging the high maneuverability of the unmanned aerial vehicle(UAV) and the expansive coverage of the intelligent reflecting surface(IRS), a multi-IRS-assisted UAV communication system aimed at maximizing the s...
详细信息
By leveraging the high maneuverability of the unmanned aerial vehicle(UAV) and the expansive coverage of the intelligent reflecting surface(IRS), a multi-IRS-assisted UAV communication system aimed at maximizing the sum data rate of all users was investigated in this paper. This is achieved through the joint optimization of the trajectory and transmit beamforming of the UAV, as well as the passive phase shift of the IRS. Nevertheless, the initial problem exhibits a high degree of non-convexity, posing challenges for conventional mathematical optimization techniques in delivering solutions that are both quick and efficient while maintaining low complexity. To address this issue, a novel scheme called the deep reinforcement learning(DRL)-based enhanced cooperative reflection network(DCRN) was proposed. This scheme effectively identifies optimal strategies, with the long short-term memory(LSTM) network improving algorithm convergence by extracting hidden state information. Simulation results demonstrate that the proposed scheme outperforms the baseline scheme, manifesting substantial enhancements in sum rate and superior performance.
Sign language recognition is vital for enhancing communication accessibility among the Deaf and hard-of-hearing *** Japan,approximately 360,000 individualswith hearing and speech disabilities rely on Japanese Sign Lan...
详细信息
Sign language recognition is vital for enhancing communication accessibility among the Deaf and hard-of-hearing *** Japan,approximately 360,000 individualswith hearing and speech disabilities rely on Japanese Sign Language(JSL)for ***,existing JSL recognition systems have faced significant performance limitations due to inherent *** response to these challenges,we present a novel JSL recognition system that employs a strategic fusion approach,combining joint skeleton-based handcrafted features and pixel-based deep learning *** system incorporates two distinct streams:the first stream extracts crucial handcrafted features,emphasizing the capture of hand and body movements within JSL ***,a deep learning-based transfer learning stream captures hierarchical representations of JSL gestures in the second ***,we concatenated the critical information of the first stream and the hierarchy of the second stream features to produce the multiple levels of the fusion features,aiming to create a comprehensive representation of the JSL *** reducing the dimensionality of the feature,a feature selection approach and a kernel-based support vector machine(SVM)were used for the *** assess the effectiveness of our approach,we conducted extensive experiments on our Lab JSL dataset and a publicly available Arabic sign language(ArSL)*** results unequivocally demonstrate that our fusion approach significantly enhances JSL recognition accuracy and robustness compared to individual feature sets or traditional recognition methods.
Although Convolutional Neural Networks(CNNs)have achieved remarkable success in image classification,most CNNs use image datasets in the Red-Green-Blue(RGB)color space(one of the most commonly used color spaces).The e...
详细信息
Although Convolutional Neural Networks(CNNs)have achieved remarkable success in image classification,most CNNs use image datasets in the Red-Green-Blue(RGB)color space(one of the most commonly used color spaces).The existing literature regarding the influence of color space use on the performance of CNNs is *** paper explores the impact of different color spaces on image classification using *** compare the performance of five CNN models with different convolution operations and numbers of layers on four image datasets,each converted to nine color *** find that color space selection can significantly affect classification accuracy,and that some classes are more sensitive to color space changes than *** color spaces may have different expression abilities for different image features,such as brightness,saturation,hue,*** leverage the complementary information from different color spaces,we propose a pseudo-Siamese network that fuses two color spaces without modifying the network *** experiments show that our proposed model can outperform the single-color-space models on most *** also find that our method is simple,flexible,and compatible with any CNN and image dataset.
Cognitive diagnosis is the judgment of the student’s cognitive ability, is a wide-spread concern in educational science. The cognitive diagnosis model (CDM) is an essential method to realize cognitive diagnosis measu...
详细信息
Cognitive diagnosis is the judgment of the student’s cognitive ability, is a wide-spread concern in educational science. The cognitive diagnosis model (CDM) is an essential method to realize cognitive diagnosis measurement. This paper presents new research on the cognitive diagnosis model and introduces four individual aspects of probability-based CDM and deep learning-based CDM. These four aspects are higher-order latent trait, polytomous responses, polytomous attributes, and multilevel latent traits. The paper also sorts on the contained ideas, model structures and respective characteristics, and provides direction for developing cognitive diagnosis in the future.
Current state-of-the-art QoS prediction methods face two main limitations. Firstly, most existing QoS prediction approaches are centralized, gathering all user-service invocation QoS records for training and optimizat...
详细信息
暂无评论