Preserving formal style in neural machine translation (NMT) is essential, yet often overlooked as an optimization objective of the training processes. This oversight can lead to translations that, though accurate, lac...
详细信息
Preserving formal style in neural machine translation (NMT) is essential, yet often overlooked as an optimization objective of the training processes. This oversight can lead to translations that, though accurate, lack formality. In this paper, we propose how to improve NMT formality with large language models (LLMs), which combines the style transfer and evaluation capabilities of an LLM and the high-quality translation generation ability of NMT models to improve NMT formality. The proposed method (namely INMTF) encompasses two approaches. The first involves a revision approach using an LLM to revise the NMT-generated translation, ensuring a formal translation style. The second approach employs an LLM as a reward model for scoring translation formality, and then uses reinforcement learning algorithms to fine-tune the NMT model to maximize the reward score, thereby enhancing the formality of the generated translations. Considering the substantial parameter size of LLMs, we also explore methods to reduce the computational cost of INMTF. Experimental results demonstrate that INMTF significantly outperforms baselines in terms of translation formality and translation quality, with an improvement of +9.19 style accuracy points in the German-to-English task and +2.16 COMET score in the Russian-to-English task. Furthermore, our work demonstrates the potential of integrating LLMs within NMT frameworks to bridge the gap between NMT outputs and the formality required in various real-world translation scenarios.
End-to-end training has emerged as a prominent trend in speech recognition, with Conformer models effectively integrating Transformer and CNN architectures. However, their complexity and high computational cost pose d...
详细信息
The current urban intelligent transportation is in a rapid development stage, and coherence control of vehicle formations has important implications in urban intelligent transportation research. This article focuses o...
详细信息
Diagnosing interconnect line defects becomes increasingly challenging in advanced Chiplet integration due to the immaturity of fabrication processes, reduced interconnect spacing, and increased density. In this paper,...
详细信息
There is a growing interest in sustainable ecosystem development, which includes methods such as scientific modeling, environmental assessment, and development forecasting and planning. However, due to insufficient su...
详细信息
Owing to strong capabilities in capturing interactions among objects and concepts, graph data has been treated as an important type of information collected by smart devices in Industrial Internet of Things, and the d...
详细信息
Multi-image steganography refers to a data-hiding scheme where a user tries to hide confidential messages within multiple images. Different from the traditional steganography which only requires the security of an ind...
详细信息
This paper introduces a simple yet effective approach for developing fuzzy logic controllers(FLCs)to identify the maximum power point(MPP)and optimize the photovoltaic(PV)system to extract the maximum power in differe...
详细信息
This paper introduces a simple yet effective approach for developing fuzzy logic controllers(FLCs)to identify the maximum power point(MPP)and optimize the photovoltaic(PV)system to extract the maximum power in different environmental *** propose a robust FLC with low computational complexity by reducing the number of membership functions and *** optimize the performance of the FLC,metaheuristic algorithms are employed to determine the parameters of the *** evaluate the proposed FLC in various panel configurations under different environmental *** results indicate that the proposed FLC can easily adapt to various panel configurations and perform better than other benchmarks in terms of enhanced stability,responsiveness,and power transfer under various scenarios.
The deep image prior (DIP) and its variants have demonstrated the ability to address image denoising in an unsupervised manner using only a noisy image as training data, but practical limitations arise due to overfitt...
详细信息
Robots are increasingly being deployed in densely populated environments, such as homes, hotels, and office buildings, where they rely on explicit instructions from humans to perform tasks. However, complex tasks ofte...
详细信息
Robots are increasingly being deployed in densely populated environments, such as homes, hotels, and office buildings, where they rely on explicit instructions from humans to perform tasks. However, complex tasks often require multiple instructions and prolonged monitoring, which can be time-consuming and demanding for users. Despite this, there is limited research on enabling robots to autonomously generate tasks based on real-life scenarios. Advanced intelligence necessitates robots to autonomously observe and analyze their environment and then generate tasks autonomously to fulfill human requirements without explicit commands. To address this gap, we propose the autonomous generation of navigation tasks using natural language dialogues. Specifically, a robot autonomously generates tasks by analyzing dialogues involving multiple persons in a real office environment to facilitate the completion of item transportation between various *** propose the leveraging of a large language model(LLM) through chain-of-thought prompting to generate a navigation sequence for a robot from dialogues. We also construct a benchmark dataset consisting of 625 multiperson dialogues using the generation capability of LLMs. Evaluation results and real-world experiments in an office building demonstrate the effectiveness of the proposed method.
暂无评论