Dear Editor,This letter focuses on how an attacker can design suitable improved zero-dynamics (ZD) attack signal based on state estimates of target system. Improved ZD attack is to change zero dynamic gain matrix of a...
Dear Editor,This letter focuses on how an attacker can design suitable improved zero-dynamics (ZD) attack signal based on state estimates of target system. Improved ZD attack is to change zero dynamic gain matrix of attack signal to a matrix with determinant greater than 1.
The agricultural sector contributes significantly to greenhouse gas emissions, which cause global warming and climate change. Numerous mathematical models have been developed to predict the greenhouse gas emissions fr...
详细信息
In recent decades, brain tumors have been regarded as a severe illness that causes significant damage to the health of the individual, and finally it results to death. Hence, the Brain Tumor Segmentation and Classific...
详细信息
In recent decades, brain tumors have been regarded as a severe illness that causes significant damage to the health of the individual, and finally it results to death. Hence, the Brain Tumor Segmentation and Classification (BTSC) has gained more attention among researcher communities. BTSC is the process of finding brain tumor tissues and classifying the tissues based on the tumor types. Manual tumor segmentation from is prone to error and a time-consuming task. A precise and fast BTSC model is developed in this manuscript based on a transfer learning-based Convolutional Neural Networks (CNN) model. The utilization of a variant of CNN is because of its superiority in distinct tasks. In the initial phase, the Magnetic Resonance Imaging (MRI) brain images are acquired from the Brain Tumor Image Segmentation Challenge (BRATS) 2019, 2020 and 2021 databases. Then the image augmentation is performed on the gathered images by using zoom-in, rotation, zoom-out, flipping, scaling, and shifting methods that effectively reduce overfitting issues in the classification model. The augmented images are segmented using the layers of the Visual-Geometry-Group (VGG-19) model. Then feature extraction using An Attribute Aware Attention (AWA) methodology is carried out on the segmented images following the segmentation block in the VGG-19 model. The crucial features are then selected using the attribute category reciprocal attention phase. These features are inputted to the Model Agnostic Concept Extractor (MACE) to generate the relevance score between the features for assisting in the final classification process. The obtained relevance scores from the MACE are provided to the max-pooling layer of the VGG-19 model. Then, the final classified output is obtained from the modified VGG-19 architecture. The implemented Relevance score with the AWA-based VGG-19 model is used to classify the tumor as the whole tumor, enhanced tumor, and tumor core. In the classification section, the proposed
In recent years, deep learning has significantly advanced skin lesion segmentation. However, annotating medical image data is specialized and costly, while obtaining unlabeled medical data is easier. To address this c...
详细信息
Image captioning is an interdisciplinary research hotspot at the intersection of computer vision and natural language processing, representing a multimodal task that integrates core technologies from both fields. This...
详细信息
This article presents an in-depth exploration of the acoustofluidic capabilities of guided flexural waves(GFWs)generated by a membrane acoustic waveguide actuator(MAWA).By harnessing the potential of GFWs,cavity-agnos...
详细信息
This article presents an in-depth exploration of the acoustofluidic capabilities of guided flexural waves(GFWs)generated by a membrane acoustic waveguide actuator(MAWA).By harnessing the potential of GFWs,cavity-agnostic advanced particle manipulation functions are achieved,unlocking new avenues for microfluidic systems and lab-on-a-chip *** localized acoustofluidic effects of GFWs arising from the evanescent nature of the acoustic fields they induce inside a liquid medium are numerically investigated to highlight their unique and promising *** traditional acoustofluidic technologies,the GFWs propagating on the MAWA’s membrane waveguide allow for cavity-agnostic particle manipulation,irrespective of the resonant properties of the fluidic ***,the acoustofluidic functions enabled by the device depend on the flexural mode populating the active region of the membrane *** demonstrations using two types of particles include in-sessile-droplet particle transport,mixing,and spatial separation based on particle diameter,along with streaming-induced counter-flow virtual channel generation in microfluidic PDMS *** experiments emphasize the versatility and potential applications of the MAWA as a microfluidic platform targeted at lab-on-a-chip development and showcase the MAWA’s compatibility with existing microfluidic systems.
Graph neural networks (GNNs) have gained increasing popularity, while usually suffering from unaffordable computations for real-world large-scale applications. Hence, pruning GNNs is of great need but largely unexplor...
详细信息
Graph neural networks (GNNs) have gained increasing popularity, while usually suffering from unaffordable computations for real-world large-scale applications. Hence, pruning GNNs is of great need but largely unexplored. The recent work Unified GNN Sparsification (UGS) studies lottery ticket learning for GNNs, aiming to find a subset of model parameters and graph structures that can best maintain the GNN performance. However, it is tailed for the transductive setting, failing to generalize to unseen graphs, which are common in inductive tasks like graph classification. In this work, we propose a simple and effective learning paradigm, Inductive Co-Pruning of GNNs (ICPG), to endow graph lottery tickets with inductive pruning capacity. To prune the input graphs, we design a predictive model to generate importance scores for each edge based on the input. To prune the model parameters, it views the weight’s magnitude as their importance scores. Then we design an iterative co-pruning strategy to trim the graph edges and GNN weights based on their importance scores. Although it might be strikingly simple, ICPG surpasses the existing pruning method and can be universally applicable in both inductive and transductive learning settings. On 10 graph-classification and two node-classification benchmarks, ICPG achieves the same performance level with 14.26%–43.12% sparsity for graphs and 48.80%–91.41% sparsity for the GNN model.
Detecting dangerous driving behavior is a critical research area focused on identifying and preventing actions that could lead to traffic accidents, such as smoking, drinking, yawning, and drowsiness, through technica...
详细信息
The tile-based multiplayer game Mahjong is widely played in Asia and has also become increasingly popular worldwide. Face-to-face or online, each player begins with a hand of 13 tiles and players draw and discard tile...
详细信息
The tile-based multiplayer game Mahjong is widely played in Asia and has also become increasingly popular worldwide. Face-to-face or online, each player begins with a hand of 13 tiles and players draw and discard tiles in turn until they complete a winning hand. An important notion in Mahjong is the deficiency number(*** number in Japanese Mahjong) of a hand, which estimates how many tile changes are necessary to complete the hand into a winning hand. The deficiency number plays an essential role in major decision-making tasks such as selecting a tile to discard. This paper proposes a fast algorithm for computing the deficiency number of a Mahjong hand. Compared with the baseline algorithm, the new algorithm is usually 100 times faster and, more importantly,respects the agent's knowledge about available tiles. The algorithm can be used as a basic procedure in all Mahjong variants by both rule-based and machine learning-based Mahjong AI.
Billions of people worldwide are affected by vision impairment majorly caused due to age-related degradation and refractive errors. Diabetic Retinopathy(DR) and Macular Hole(MH) are among the most prevalent senescent ...
详细信息
暂无评论