The recent Internet of Things (IoT) adoption has revolutionized various applications while introducing significant security and privacy challenges. Traditional security solutions are unsuitable for IoT systems due to ...
详细信息
In this paper, we construct an efficient decoupling-type strategy for solving the Allen-Cahn equation on curved surfaces. It is based on an FEM-EIEQ(Finite Element Method and explicit-Invariant Energy Quadratization) ...
详细信息
In this paper, we construct an efficient decoupling-type strategy for solving the Allen-Cahn equation on curved surfaces. It is based on an FEM-EIEQ(Finite Element Method and explicit-Invariant Energy Quadratization) fully discrete scheme with unconditional energy stability. Spatially the FEM is adopted, using a triangular mesh discretization strategy that can be adapted to complex regions. Temporally, the EIEQ approach is considered, which not only linearizes the nonlinear potential but also gives a new variable that we combine with the nonlocal splitting method to achieve the fully decoupled computation. The strategy can successfully transform the Allen-Cahn system into some completely independent algebraic equations and linear elliptic equations with constant coefficients, we only need to solve these simple equations at each time step. Moreover, we conducted some numerical experiments to demonstrate the effectiveness of the strategy.
Crop weed segmentation is one of the most challenging tasks in the field of computer vision. This is because, unlike other object detection or segmentation tasks, crop and weed are similar in terms of spectral feature...
详细信息
This paper explores a double quantum images representation(DNEQR)model that allows for simultaneous storage of two digital images in a quantum superposition ***,a new type of two-dimensional hyperchaotic system based ...
详细信息
This paper explores a double quantum images representation(DNEQR)model that allows for simultaneous storage of two digital images in a quantum superposition ***,a new type of two-dimensional hyperchaotic system based on sine and logistic maps is investigated,offering a wider parameter space and better chaotic behavior compared to the sine and logistic *** on the DNEQR model and the hyperchaotic system,a double quantum images encryption algorithm is ***,two classical plaintext images are transformed into quantum states using the DNEQR ***,the proposed hyperchaotic system is employed to iteratively generate pseudo-random *** chaotic sequences are utilized to perform pixel value and position operations on the quantum image,resulting in changes to both pixel values and ***,the ciphertext image can be obtained by qubit-level diffusion using two XOR operations between the position-permutated image and the pseudo-random *** corresponding quantum circuits are also *** results demonstrate that the proposed scheme ensures the security of the images during transmission,improves the encryption efficiency,and enhances anti-interference and anti-attack capabilities.
1 Introduction On-device deep learning(DL)on mobile and embedded IoT devices drives various applications[1]like robotics image recognition[2]and drone swarm classification[3].Efficient local data processing preserves ...
详细信息
1 Introduction On-device deep learning(DL)on mobile and embedded IoT devices drives various applications[1]like robotics image recognition[2]and drone swarm classification[3].Efficient local data processing preserves privacy,enhances responsiveness,and saves ***,current ondevice DL relies on predefined patterns,leading to accuracy and efficiency *** is difficult to provide feedback on data processing performance during the data acquisition stage,as processing typically occurs after data acquisition.
In current research on task offloading and resource scheduling in vehicular networks,vehicles are commonly assumed to maintain constant speed or relatively stationary states,and the impact of speed variations on task ...
详细信息
In current research on task offloading and resource scheduling in vehicular networks,vehicles are commonly assumed to maintain constant speed or relatively stationary states,and the impact of speed variations on task offloading is often *** is frequently assumed that vehicles can be accurately modeled during actual motion ***,in vehicular dynamic environments,both the tasks generated by the vehicles and the vehicles’surroundings are constantly changing,making it difficult to achieve real-time modeling for actual dynamic vehicular network *** into account the actual dynamic vehicular scenarios,this paper considers the real-time non-uniform movement of vehicles and proposes a vehicular task dynamic offloading and scheduling algorithm for single-task multi-vehicle vehicular network scenarios,attempting to solve the dynamic decision-making problem in task offloading *** optimization objective is to minimize the average task completion time,which is formulated as a multi-constrained non-linear programming *** to the mobility of vehicles,a constraint model is applied in the decision-making process to dynamically determine whether the communication range is sufficient for task offloading and ***,the proposed vehicular task dynamic offloading and scheduling algorithm based on muti-agent deep deterministic policy gradient(MADDPG)is applied to solve the optimal solution of the optimization *** results show that the algorithm proposed in this paper is able to achieve lower latency task computation ***,the average task completion time of the proposed algorithm in this paper can be improved by 7.6%compared to the performance of the MADDPG scheme and 51.1%compared to the performance of deep deterministic policy gradient(DDPG).
Essay assignment is one of the methods that help teachers to understand the writing skills of the students. Often these assignments are graded manually. Courses enrolled with hundreds of students put a lot of pressure...
详细信息
The field of sentiment analysis(SA)has grown in tandem with the aid of social networking platforms to exchange opinions and *** people share their views and ideas around the world through social media like Facebook an...
详细信息
The field of sentiment analysis(SA)has grown in tandem with the aid of social networking platforms to exchange opinions and *** people share their views and ideas around the world through social media like Facebook and *** goal of opinion mining,commonly referred to as sentiment analysis,is to categorise and forecast a target’s *** on if they provide a positive or negative perspective on a given topic,text documents or sentences can be *** compared to sentiment analysis,text categorization may appear to be a simple process,but number of challenges have prompted numerous studies in this area.A feature selection-based classification algorithm in conjunction with the firefly with levy and multilayer perceptron(MLP)techniques has been proposed as a way to automate sentiment analysis(SA).In this study,online product reviews can be enhanced by integrating classification and feature *** firefly(FF)algorithm was used to extract features from online product reviews,and a multi-layer perceptron was used to classify sentiment(MLP).The experiment employs two datasets,and the results are assessed using a variety of *** account of these tests,it is possible to conclude that the FFL-MLP algorithm has the better classification performance for Canon(98%accuracy)and iPod(99%accuracy).
Thereis an urgent need for strong security measures to protect Body Area Networks (BANs) from malicious threats, as their use in health monitoring and telemedicine continues to grow. To improve BAN security, this rese...
详细信息
The development of smart mobile devices brings convenience to people's lives, but also provides a breeding ground for Android malware. The sharp increasing malware poses a disastrous threat to personal privacy in ...
详细信息
The development of smart mobile devices brings convenience to people's lives, but also provides a breeding ground for Android malware. The sharp increasing malware poses a disastrous threat to personal privacy in the information age. Based on the fact that malware heavily resorts to system application programming interfaces(APIs) to perform its malicious actions,there has been a variety of API-based detection *** of them do not consider the relationship between APIs. We contribute a new approach based on the enhanced API order for Android malware detection, named EAODroid, which learns the similarity of system APIs from a large number of API sequences and groups similar APIs into clusters. The extracted API clusters are further used to enhance the original API calls executed by an app to characterize behaviors and perform classification. We perform multi-dimensional experiments to evaluate EAODroid on three datasets with ground truth. We compare with many state-of-the-art works, showing that EAODroid achieves effective performance in Android malware detection.
暂无评论