Deep Hashing is a technique used for retrieving images on a large-scale, encoding the latent code of images into binary codes, which significantly reduces computational and storage costs in image retrieval. This enabl...
详细信息
Unmanned and aerial systems as interactors among different system components for communications,have opened up great opportunities for truth data discovery in Mobile Crowd Sensing(MCS)which has not been properly solve...
详细信息
Unmanned and aerial systems as interactors among different system components for communications,have opened up great opportunities for truth data discovery in Mobile Crowd Sensing(MCS)which has not been properly solved in the *** this paper,an Unmanned Aerial Vehicles-supported Intelligent Truth Discovery(UAV-ITD)scheme is proposed to obtain truth data at low-cost communications for *** main innovations of the UAV-ITD scheme are as follows:(1)UAV-ITD scheme takes the first step in employing UAV joint Deep Matrix Factorization(DMF)to discover truth data based on the trust mechanism for an Information Elicitation Without Verification(IEWV)problem in MCS.(2)This paper introduces a truth data discovery scheme for the first time that only needs to collect a part of n data samples to infer the data of the entire network with high accuracy,which saves more communication costs than most previous data collection schemes,where they collect n or kn data ***,we conducted extensive experiments to evaluate the UAV-ITD *** results show that compared with previous schemes,our scheme can reduce estimated truth error by 52.25%–96.09%,increase the accuracy of workers’trust evaluation by 0.68–61.82 times,and save recruitment costs by 24.08%–54.15%in truth data discovery.
Over the years, numerous optimization problems have been addressed utilizing meta-heuristic algorithms. Continuing initiatives have always been to create and develop new, practical algorithms. This work proposes a nov...
详细信息
Roads are an important part of transporting goods and products from one place to another. In developing countries, the main challenge is to maintain road conditions regularly. Roads can deteriorate from time to time. ...
详细信息
People-centric activity recognition is one of the most critical technologies in a wide range of real-world applications,including intelligent transportation systems, healthcare services, and brain-computer interfaces....
详细信息
People-centric activity recognition is one of the most critical technologies in a wide range of real-world applications,including intelligent transportation systems, healthcare services, and brain-computer interfaces. Large-scale data collection and annotation make the application of machine learning algorithms prohibitively expensive when adapting to new tasks. One way of circumventing this limitation is to train the model in a semi-supervised learning manner that utilizes a percentage of unlabeled data to reduce the labeling burden in prediction tasks. Despite their appeal, these models often assume that labeled and unlabeled data come from similar distributions, which leads to the domain shift problem caused by the presence of distribution gaps. To address these limitations, we propose herein a novel method for people-centric activity recognition,called domain generalization with semi-supervised learning(DGSSL), that effectively enhances the representation learning and domain alignment capabilities of a model. We first design a new autoregressive discriminator for adversarial training between unlabeled and labeled source domains, extracting domain-specific features to reduce the distribution gaps. Second, we introduce two reconstruction tasks to capture the task-specific features to avoid losing information related to representation learning while maintaining task-specific consistency. Finally, benefiting from the collaborative optimization of these two tasks, the model can accurately predict both the domain and category labels of the source domains for the classification task. We conduct extensive experiments on three real-world sensing datasets. The experimental results show that DGSSL surpasses the three state-of-the-art methods with better performance and generalization.
Recent advances in wireless sensor networks (WSNs) have brought the sensor based monitoring developments to the surface in many applications. In such a scenario, the security of communication is a major challenge in t...
详细信息
Point cloud completion aims to infer complete point clouds based on partial 3D point cloud *** previous methods apply coarseto-fine strategy networks for generating complete point ***,such methods are not only relativ...
详细信息
Point cloud completion aims to infer complete point clouds based on partial 3D point cloud *** previous methods apply coarseto-fine strategy networks for generating complete point ***,such methods are not only relatively time-consuming but also cannot provide representative complete shape features based on partial *** this paper,a novel feature alignment fast point cloud completion network(FACNet)is proposed to directly and efficiently generate the detailed shapes of *** aligns high-dimensional feature distributions of both partial and complete point clouds to maintain global information about the complete *** its decoding process,the local features from the partial point cloud are incorporated along with the maintained global information to ensure complete and time-saving generation of the complete point *** results show that FACNet outperforms the state-of-theart on PCN,Completion3D,and MVP datasets,and achieves competitive performance on ShapeNet-55 and KITTI ***,FACNet and a simplified version,FACNet-slight,achieve a significant speedup of 3–10 times over other state-of-the-art methods.
In high-risk industrial environments like nuclear power plants, precise defect identification and localization are essential for maintaining production stability and safety. However, the complexity of such a harsh env...
详细信息
In high-risk industrial environments like nuclear power plants, precise defect identification and localization are essential for maintaining production stability and safety. However, the complexity of such a harsh environment leads to significant variations in the shape and size of the defects. To address this challenge, we propose the multivariate time series segmentation network(MSSN), which adopts a multiscale convolutional network with multi-stage and depth-separable convolutions for efficient feature extraction through variable-length templates. To tackle the classification difficulty caused by structural signal variance, MSSN employs logarithmic normalization to adjust instance distributions. Furthermore, it integrates classification with smoothing loss functions to accurately identify defect segments amid similar structural and defect signal subsequences. Our algorithm evaluated on both the Mackey-Glass dataset and industrial dataset achieves over 95% localization and demonstrates the capture capability on the synthetic dataset. In a nuclear plant's heat transfer tube dataset, it captures 90% of defect instances with75% middle localization F1 score.
Owing to the extensive applications in many areas such as networked systems,formation flying of unmanned air vehicles,and coordinated manipulation of multiple robots,the distributed containment control for nonlinear m...
Owing to the extensive applications in many areas such as networked systems,formation flying of unmanned air vehicles,and coordinated manipulation of multiple robots,the distributed containment control for nonlinear multiagent systems (MASs) has received considerable attention,for example [1,2].Although the valued studies in [1,2] investigate containment control problems for MASs subject to nonlinearities,the proposed distributed nonlinear protocols only achieve the asymptotic *** a crucial performance indicator for distributed containment control of MASs,the fast convergence is conducive to achieving better control accuracy [3].The work in [4] first addresses the backstepping-based adaptive fuzzy fixed-time containment tracking problem for nonlinear high-order MASs with unknown external ***,the designed fixedtime control protocol [4] cannot escape the singularity problem in the backstepping-based adaptive control *** is well known,the singularity problem has become an inherent problem in the adaptive fixed-time control design,which may cause the unbounded control inputs and even the instability of controlled ***,how to solve the nonsingular fixed-time containment control problem for nonlinear MASs is still open and awaits breakthrough to the best of our knowledge.
In task offloading, the movement of vehicles causes the switching of connected RSUs and servers, which may lead to task offloading failure or high service delay. In this paper, we analyze the impact of vehicle movemen...
详细信息
In task offloading, the movement of vehicles causes the switching of connected RSUs and servers, which may lead to task offloading failure or high service delay. In this paper, we analyze the impact of vehicle movements on task offloading and reveal that data preparation time for task execution can be minimized via forward-looking scheduling. Then, a Bi-LSTM-based model is proposed to predict the trajectories of vehicles. The service area is divided into several equal-sized grids. If the actual position of the vehicle and the predicted position by the model belong to the same grid, the prediction is considered correct, thereby reducing the difficulty of vehicle trajectory prediction. Moreover, we propose a scheduling strategy for delay optimization based on the vehicle trajectory prediction. Considering the inevitable prediction error, we take some edge servers around the predicted area as candidate execution servers and the data required for task execution are backed up to these candidate servers, thereby reducing the impact of prediction deviations on task offloading and converting the modest increase of resource overheads into delay reduction in task offloading. Simulation results show that, compared with other classical schemes, the proposed strategy has lower average task offloading delays.
暂无评论