Mobile edge computing(MEC) provides edge services to users in a distributed and on-demand *** to the heterogeneity of edge applications, deploying latency and resource-intensive applications on resourceconstrained dev...
详细信息
Mobile edge computing(MEC) provides edge services to users in a distributed and on-demand *** to the heterogeneity of edge applications, deploying latency and resource-intensive applications on resourceconstrained devices is a key challenge for service providers. This is especially true when underlying edge infrastructures are fault and error-prone. In this paper, we propose a fault tolerance approach named DFGP, for enforcing mobile service fault-tolerance in MEC. It synthesizes a generative optimization network(GON) model for predicting resource failure and a deep deterministic policy gradient(DDPG) model for yielding preemptive migration *** show through extensive simulation experiments that DFGP is more effective in fault detection and guaranteeing quality of service, in terms of fault detection accuracy, migration efficiency, task migration time, task scheduling time,and energy consumption than other existing methods.
Researchers have recently achieved significant advances in deep learning techniques, which in turn has substantially advanced other research disciplines, such as natural language processing, image processing, speech r...
详细信息
Researchers have recently achieved significant advances in deep learning techniques, which in turn has substantially advanced other research disciplines, such as natural language processing, image processing, speech recognition, and softwareengineering. Various deep learning techniques have been successfully employed to facilitate softwareengineering tasks, including code generation, software refactoring, and fault localization. Many studies have also been presented in top conferences and journals, demonstrating the applications of deep learning techniques in resolving various softwareengineering tasks. However,although several surveys have provided overall pictures of the application of deep learning techniques in softwareengineering,they focus more on learning techniques, that is, what kind of deep learning techniques are employed and how deep models are trained or fine-tuned for softwareengineering tasks. We still lack surveys explaining the advances of subareas in softwareengineering driven by deep learning techniques, as well as challenges and opportunities in each subarea. To this end, in this study, we present the first task-oriented survey on deep learning-based softwareengineering. It covers twelve major softwareengineering subareas significantly impacted by deep learning techniques. Such subareas spread out through the whole lifecycle of software development and maintenance, including requirements engineering, software development, testing, maintenance, and developer collaboration. As we believe that deep learning may provide an opportunity to revolutionize the whole discipline of softwareengineering, providing one survey covering as many subareas as possible in softwareengineering can help future research push forward the frontier of deep learning-based softwareengineering more systematically. For each of the selected subareas,we highlight the major advances achieved by applying deep learning techniques with pointers to the available datasets i
Point cloud completion is crucial in point cloud processing, as it can repair and refine incomplete 3D data, ensuring more accurate models. However, current point cloud completion methods commonly face a challenge: th...
详细信息
In the analysis of drone aerial images, object detection tasks are particularly challenging, especially in the presence of complex terrain structures, extreme differences in target sizes, suboptimal shooting angles, a...
详细信息
In the analysis of drone aerial images, object detection tasks are particularly challenging, especially in the presence of complex terrain structures, extreme differences in target sizes, suboptimal shooting angles, and varying lighting conditions, all of which exacerbate the difficulty of recognition. In recent years, the DETR model based on the Transformer architecture has eliminated traditional post-processing steps such as NMS(Non-Maximum Suppression), thereby simplifying the object detection process and improving detection accuracy, which has garnered widespread attention in the academic community. However, DETR has limitations such as slow training convergence, difficulty in query optimization, and high computational costs, which hinder its application in practical fields. To address these issues, this paper proposes a new object detection model called OptiDETR. This model first employs a more efficient hybrid encoder to replace the traditional Transformer encoder. The new encoder significantly enhances feature processing capabilities through internal and cross-scale feature interaction and fusion logic. Secondly, an IoU (Intersection over Union) aware query selection mechanism is introduced. This mechanism adds IoU constraints during the training phase to provide higher-quality initial object queries for the decoder, significantly improving the decoding performance. Additionally, the OptiDETR model integrates SW-Block into the DETR decoder, leveraging the advantages of Swin Transformer in global context modeling and feature representation to further enhance the performance and efficiency of object detection. To tackle the problem of small object detection, this study innovatively employs the SAHI algorithm for data augmentation. Through a series of experiments, It achieved a significant performance improvement of more than two percentage points in the mAP (mean Average Precision) metric compared to current mainstream object detection models. Furthermore, ther
Partial-label learning(PLL) is a typical problem of weakly supervised learning, where each training instance is annotated with a set of candidate labels. Self-training PLL models achieve state-of-the-art performance b...
详细信息
Partial-label learning(PLL) is a typical problem of weakly supervised learning, where each training instance is annotated with a set of candidate labels. Self-training PLL models achieve state-of-the-art performance but suffer from error accumulation problems caused by mistakenly disambiguated instances. Although co-training can alleviate this issue by training two networks simultaneously and allowing them to interact with each other, most existing co-training methods train two structurally identical networks with the same task, i.e., are symmetric, rendering it insufficient for them to correct each other due to their similar limitations. Therefore, in this paper, we propose an asymmetric dual-task co-training PLL model called AsyCo,which forces its two networks, i.e., a disambiguation network and an auxiliary network, to learn from different views explicitly by optimizing distinct tasks. Specifically, the disambiguation network is trained with a self-training PLL task to learn label confidence, while the auxiliary network is trained in a supervised learning paradigm to learn from the noisy pairwise similarity labels that are constructed according to the learned label confidence. Finally, the error accumulation problem is mitigated via information distillation and confidence refinement. Extensive experiments on both uniform and instance-dependent partially labeled datasets demonstrate the effectiveness of AsyCo.
Graph neural networks have proven their effectiveness for user-item interaction graph collaborative filtering. However, most of the existing recommendation models highly depended on abundant and high-quality datasets ...
详细信息
To enhance the capability of classifying and localizing defects on the surface of hot-rolled strips, this paper proposed an algorithm based on YOLOv7 to improve defect detection. The BI-SPPFCSPC structure was incorpor...
详细信息
Person Re-Identification falls within the scope of computer vision, acting a technique to ascertain the presence of a specified pedestrian within a video or image library. The related research is of great significance...
详细信息
In recent years, the utilization of unmanned aerial vehicles (UAVs) for aerial target detection has gained significant attention due to their high-altitude perspective and maneuverability, which offer novel opportunit...
详细信息
Pedestrian re-identification technology enables accurate identification of individuals and is widely used in modern intelligent video surveillance systems to aid law enforcement, including criminal apprehension and lo...
详细信息
暂无评论