Unsupervised Remote sensing change detection is very important because it addresses the problem of scarcity in the data availability in training. Some of the researchers are successful in finding the change regions bu...
详细信息
The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software w...
详细信息
The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes two major processes namely metric or feature selection and classification. First, the SQADEN uses the nonparametric statistical Torgerson–Gower scaling technique for identifying the relevant software metrics by measuring the similarity using the dice coefficient. The feature selection process is used to minimize the time complexity of software fault prediction. With the selected metrics, software fault perdition with the help of the Quadratic Censored regressive convolution deep neural network-based classification. The deep learning classifier analyzes the training and testing samples using the contingency correlation coefficient. The softstep activation function is used to provide the final fault prediction results. To minimize the error, the Nelder–Mead method is applied to solve non-linear least-squares problems. Finally, accurate classification results with a minimum error are obtained at the output layer. Experimental evaluation is carried out with different quantitative metrics such as accuracy, precision, recall, F-measure, and time complexity. The analyzed results demonstrate the superior performance of our proposed SQADEN technique with maximum accuracy, sensitivity and specificity by 3%, 3%, 2% and 3% and minimum time and space by 13% and 15% when compared with the two sta
The increasing data pool in finance sectors forces machine learning(ML)to step into new *** data has significant financial implications and is *** users data from several organizations for various banking services may...
详细信息
The increasing data pool in finance sectors forces machine learning(ML)to step into new *** data has significant financial implications and is *** users data from several organizations for various banking services may result in various intrusions and privacy *** a result,this study employs federated learning(FL)using a flower paradigm to preserve each organization’s privacy while collaborating to build a robust shared global ***,diverse data distributions in the collaborative training process might result in inadequate model learning and a lack of *** address this issue,the present paper proposes the imple-mentation of Federated Averaging(FedAvg)and Federated Proximal(FedProx)methods in the flower framework,which take advantage of the data locality while training and guaranteeing global *** improves the privacy of the local *** analysis used the credit card and Canadian Institute for Cybersecurity Intrusion Detection Evaluation(CICIDS)***,recall,and accuracy as performance indicators to show the efficacy of the proposed strategy using FedAvg and *** experimental findings suggest that the proposed approach helps to safely use banking data from diverse sources to enhance customer banking services by obtaining accuracy of 99.55%and 83.72%for FedAvg and 99.57%,and 84.63%for FedProx.
Coconut tree diseases are a serious risk to agricultural yield, particularly in developing countries where conventional farming practices restrict early diagnosis and intervention. Current disease identification metho...
详细信息
Machine learning has become important for anomaly detection in water quality prediction. Data anomalies are often caused by the difficulties of analysing large amounts of data, both technical and human, but approaches...
详细信息
Emotion recognition using biological brain signals needs to be reliable to attain effective signal processing and feature extraction techniques. The impact of emotions in interpretations, conversations, and decision-m...
详细信息
Emotion recognition using biological brain signals needs to be reliable to attain effective signal processing and feature extraction techniques. The impact of emotions in interpretations, conversations, and decision-making, has made automatic emotion recognition and examination of a significant feature in the field of psychiatric disease treatment and cure. The problem arises from the limited spatial resolution of EEG recorders. Predetermined quantities of electroencephalography (EEG) channels are used by existing algorithms, which combine several methods to extract significant data. The major intention of this study was to focus on enhancing the efficiency of recognizing emotions using signals from the brain through an experimental, adaptive selective channel selection approach that recognizes that brain function shows distinctive behaviors that vary from one individual to another individual and from one state of emotions to another. We apply a Bernoulli–Laplace-based Bayesian model to map each emotion from the scalp senses to brain sources to resolve this issue of emotion mapping. The standard low-resolution electromagnetic tomography (sLORETA) technique is employed to instantiate the source signals. We employed a progressive graph convolutional neural network (PG-CNN) to identify the sources of the suggested localization model and the emotional EEG as the main graph nodes. In this study, the proposed framework uses a PG-CNN adjacency matrix to express the connectivity between the EEG source signals and the matrix. Research on an EEG dataset of parents of an ASD (autism spectrum disorder) child has been utilized to investigate the ways of parenting of the child's mother and father. We engage with identifying the personality of parental behaviors when regulating the child and supervising his or her daily activities. These recorded datasets incorporated by the proposed method identify five emotions from brain source modeling, which significantly improves the accurac
UAV networks often encounter jamming attacks, under which multi-radio protocols have to switch radios to accelerate communication recovery. However, the existing protocols rely on exchange of hello messages to detect ...
详细信息
UAV networks often encounter jamming attacks, under which multi-radio protocols have to switch radios to accelerate communication recovery. However, the existing protocols rely on exchange of hello messages to detect jamming, leading to long sensing time and thus slow routing recovery. To address the issues raised by jamming attacks, we propose a new routing protocol, Electromagnetic Spectrum situation awareness Optimized Link State Routing (ESOLSR) protocol, to improve the existing OLSRv2 protocol. ESOLSR utilizes the spectrum situation awareness capability from the physical layer, and adopts joint-updating of link status, updating of interface functions, and adaptive adjustment of parameters. Our simulation results show that the improved protocol, ESOLSR, can recover routing and resume normal communication 26.6% faster compared to the existing protocols.
Industrial Internet of Things(IIoT)is a pervasive network of interlinked smart devices that provide a variety of intelligent computing services in industrial *** IIoT nodes operate confidential data(such as medical,tr...
详细信息
Industrial Internet of Things(IIoT)is a pervasive network of interlinked smart devices that provide a variety of intelligent computing services in industrial *** IIoT nodes operate confidential data(such as medical,transportation,military,etc.)which are reachable targets for hostile intruders due to their openness and varied *** Detection systems(IDS)based on Machine Learning(ML)and Deep Learning(DL)techniques have got significant ***,existing ML and DL-based IDS still face a number of obstacles that must be *** instance,the existing DL approaches necessitate a substantial quantity of data for effective performance,which is not feasible to run on low-power and low-memory *** and fewer data potentially lead to low performance on existing *** paper proposes a self-attention convolutional neural network(SACNN)architecture for the detection of malicious activity in IIoT networks and an appropriate feature extraction method to extract the most significant *** proposed architecture has a self-attention layer to calculate the input attention and convolutional neural network(CNN)layers to process the assigned attention features for *** performance evaluation of the proposed SACNN architecture has been done with the Edge-IIoTset and X-IIoTID *** datasets encompassed the behaviours of contemporary IIoT communication protocols,the operations of state-of-the-art devices,various attack types,and diverse attack scenarios.
Internet of Medical Things (IoMT) is a technology that encompasses medical devices, wearable sensors, and applications connected to the Internet. In road accidents, it plays a crucial role in enhancing emergency respo...
详细信息
Digital speech processing applications including automatic speech recognition (ASR), speaker recognition, speech translation, and others, essentially require large volumes of speech data for training and testing purpo...
详细信息
暂无评论