Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as *** has been seen as a robust solution to relevant challenges.A significant delay can ha...
详细信息
Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as *** has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud ***,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing *** proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution ***,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating *** study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam *** outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection *** excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage *** efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and *** simulated data indicates that the new MCWOA outpaces other methods across all *** study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO).
Emotion recognition plays a crucial role in various fields and is a key task in natural language processing (NLP). The objective is to identify and interpret emotional expressions in text. However, traditional emotion...
详细信息
Emotion recognition plays a crucial role in various fields and is a key task in natural language processing (NLP). The objective is to identify and interpret emotional expressions in text. However, traditional emotion recognition approaches often struggle in few-shot cross-domain scenarios due to their limited capacity to generalize semantic features across different domains. Additionally, these methods face challenges in accurately capturing complex emotional states, particularly those that are subtle or implicit. To overcome these limitations, we introduce a novel approach called Dual-Task Contrastive Meta-Learning (DTCML). This method combines meta-learning and contrastive learning to improve emotion recognition. Meta-learning enhances the model’s ability to generalize to new emotional tasks, while instance contrastive learning further refines the model by distinguishing unique features within each category, enabling it to better differentiate complex emotional expressions. Prototype contrastive learning, in turn, helps the model address the semantic complexity of emotions across different domains, enabling the model to learn fine-grained emotions expression. By leveraging dual tasks, DTCML learns from two domains simultaneously, the model is encouraged to learn more diverse and generalizable emotions features, thereby improving its cross-domain adaptability and robustness, and enhancing its generalization ability. We evaluated the performance of DTCML across four cross-domain settings, and the results show that our method outperforms the best baseline by 5.88%, 12.04%, 8.49%, and 8.40% in terms of accuracy.
Large-scale neural networks-based federated learning(FL)has gained public recognition for its effective capabilities in distributed ***,the open system architecture inherent to federated learning systems raises concer...
详细信息
Large-scale neural networks-based federated learning(FL)has gained public recognition for its effective capabilities in distributed ***,the open system architecture inherent to federated learning systems raises concerns regarding their vulnerability to potential *** attacks turn into a major menace to federated learning on account of their concealed property and potent destructive *** altering the local model during routine machine learning training,attackers can easily contaminate the global *** detection and aggregation solutions mitigate certain threats,but they are still insufficient to completely eliminate the influence generated by ***,federated unlearning that can remove unreliable models while maintaining the accuracy of the global model has become a *** some existing federated unlearning approaches are rather difficult to be applied in large neural network models because of their high computational ***,we propose SlideFU,an efficient anti-poisoning attack federated unlearning *** primary concept of SlideFU is to employ sliding window to construct the training process,where all operations are confined within the *** design a malicious detection scheme based on principal component analysis(PCA),which calculates the trust factors between compressed models in a low-cost way to eliminate unreliable *** confirming that the global model is under attack,the system activates the federated unlearning process,calibrates the gradients based on the updated direction of the calibration *** on two public datasets demonstrate that our scheme can recover a robust model with extremely high efficiency.
Due to their biological interpretability,memristors are widely used to simulate synapses between artificial neural *** a type of neural network whose dynamic behavior can be explained,the coupling of resonant tunnelin...
详细信息
Due to their biological interpretability,memristors are widely used to simulate synapses between artificial neural *** a type of neural network whose dynamic behavior can be explained,the coupling of resonant tunneling diode-based cellular neural networks(RTD-CNNs)with memristors has rarely been reported in the ***,this paper designs a coupled RTD-CNN model with memristors(RTD-MCNN),investigating and analyzing the dynamic behavior of the *** on this model,a simple encryption scheme for the protection of digital images in police forensic applications is *** results show that the RTD-MCNN can have two positive Lyapunov exponents,and its output is influenced by the initial values,exhibiting ***,a set of amplitudes in its output sequence is affected by the internal parameters of the memristor,leading to nonlinear ***,the rich dynamic behaviors described above make the RTD-MCNN highly suitable for the design of chaos-based encryption schemes in the field of privacy *** tests and security analyses validate the effectiveness of this scheme.
The most widely farmed fruit in the world is *** the production and quality of the mangoes are hampered by many *** diseases need to be effectively controlled and ***,a quick and accurate diagnosis of the disorders is...
详细信息
The most widely farmed fruit in the world is *** the production and quality of the mangoes are hampered by many *** diseases need to be effectively controlled and ***,a quick and accurate diagnosis of the disorders is *** convolutional neural networks,renowned for their independence in feature extraction,have established their value in numerous detection and classification ***,it requires large training datasets and several parameters that need careful *** proposed Modified Dense Convolutional Network(MDCN)provides a successful classification scheme for plant diseases affecting mango *** model employs the strength of pre-trained networks and modifies them for the particular context of mango leaf diseases by incorporating transfer learning *** data loader also builds mini-batches for training the models to reduce training ***,optimization approaches help increase the overall model’s efficiency and lower computing *** employed on the MangoLeafBD Dataset consists of a total of 4,000 *** the experimental results,the proposed system is compared with existing techniques and it is clear that the proposed algorithm surpasses the existing algorithms by achieving high performance and overall throughput.
Instance co-segmentation aims to segment the co-occurrent instances among two *** task heavily relies on instance-related cues provided by co-peaks,which are generally estimated by exhaustively exploiting all paired c...
详细信息
Instance co-segmentation aims to segment the co-occurrent instances among two *** task heavily relies on instance-related cues provided by co-peaks,which are generally estimated by exhaustively exploiting all paired candidates in point-to-point ***,such patterns could yield a high number of false-positive co-peaks,resulting in over-segmentation whenever there are mutual *** tackle with this issue,this paper proposes an instance co-segmentation method via tensor-based salient co-peak search(TSCPS-ICS).The proposed method explores high-order correlations via triple-to-triple matching among feature maps to find reliable co-peaks with the help of co-saliency *** proposed method is shown to capture more accurate intra-peaks and inter-peaks among feature maps,reducing the false-positive rate of co-peak *** having accurate co-peaks,one can efficiently infer responses of the targeted *** on four benchmark datasets validate the superior performance of the proposed method.
Large models have recently played a dominant role in natural language processing and multimodal vision-language learning. However, their effectiveness in text-related visual tasks remains relatively unexplored. In thi...
详细信息
Large models have recently played a dominant role in natural language processing and multimodal vision-language learning. However, their effectiveness in text-related visual tasks remains relatively unexplored. In this paper, we conducted a comprehensive evaluation of large multimodal models, such as GPT4V and Gemini, in various text-related visual tasks including text recognition, scene text-centric visual question answering(VQA), document-oriented VQA, key information extraction(KIE), and handwritten mathematical expression recognition(HMER). To facilitate the assessment of optical character recognition(OCR) capabilities in large multimodal models, we propose OCRBench, a comprehensive evaluation benchmark. OCRBench contains 29 datasets, making it the most comprehensive OCR evaluation benchmark available. Furthermore, our study reveals both the strengths and weaknesses of these models, particularly in handling multilingual text, handwritten text, non-semantic text, and mathematical expression *** importantly, the baseline results presented in this study could provide a foundational framework for the conception and assessment of innovative strategies targeted at enhancing zero-shot multimodal *** evaluation pipeline and benchmark are available at https://***/Yuliang-Liu/Multimodal OCR.
Skin cancer is a serious and potentially life-threatening condition caused by DNA damage in the skin cells, leading to genetic mutations and abnormal cell growth. These mutations can cause the cells to divide and grow...
详细信息
Skin cancer is a serious and potentially life-threatening condition caused by DNA damage in the skin cells, leading to genetic mutations and abnormal cell growth. These mutations can cause the cells to divide and grow uncontrollably, forming a tumor on the skin. To prevent skin cancer from spreading and potentially leading to serious complications, it's critical to identify and treat it as early as possible. An innovative two-fold deep learning based skin cancer detection model is presented in this research work. Five main stages make up the proposed model: Preprocessing, segmentation, feature extraction, feature selection, and skin cancer detection. Initially, the Min–max contrast stretching and median filtering used to pre-process the collected raw image. From the pre-processed image, the Region of Intertest (ROI) is identified via optimized mask Region-based Convolutional Neural Network (R-CNN). Then, from the identified ROI areas, the texture features like Illumination-invariant Binary Gabor Pattern (II-BGP), Local Binary Pattern (LBP), Gray-Level Co-occurrence Matrix (GLCM), Color feature such as Color Correlogram and Histogram Intersection, and Shape feature including Moments, Area, Perimeter, Eccentricity, Average bending energy are extracted. To choose the optimal features from the extracted ones, the Golden Eagle Mutated Leader Optimization (GEMLO) is used. The proposed Golden Eagle Mutated Leader Optimization (GEMLO) is the conceptual amalgamation of the standard Mutated Leader Algorithm (MLA) and Golden Eagle Optimizer are used to select best features (GEO). The skin cancer detection is accomplished via two-fold-deep-learning-classifiers, that includes the Fully Convolutional Neural Networks (FCNs) and Multi-Layer Perception (MLP). The final outcome is the combination of the outcomes acquired from Fully Convolutional Neural Networks (FCNs) and Multi-Layer Perception (MLP). The PYTHON platform is being used to implement the suggested model. Using the curre
Recently,Generative Adversarial Networks(GANs)have become the mainstream text-to-image(T2I)***,a standard normal distribution noise of inputs cannot provide sufficient information to synthesize an image that approache...
详细信息
Recently,Generative Adversarial Networks(GANs)have become the mainstream text-to-image(T2I)***,a standard normal distribution noise of inputs cannot provide sufficient information to synthesize an image that approaches the ground-truth image ***,the multistage generation strategy results in complex T2I ***,this study proposes a novel feature-grounded single-stage T2I model,which considers the“real”distribution learned from training images as one input and introduces a worst-case-optimized similarity measure into the loss function to enhance the model's generation *** results on two benchmark datasets demonstrate the competitive performance of the proposed model in terms of the Frechet inception distance and inception score compared to those of some classical and state-of-the-art models,showing the improved similarities among the generated image,text,and ground truth.
In the fields of intelligent transportation and multi-task cooperation, many practical problems can be modeled by colored traveling salesman problem(CTSP). When solving large-scale CTSP with a scale of more than 1000d...
详细信息
In the fields of intelligent transportation and multi-task cooperation, many practical problems can be modeled by colored traveling salesman problem(CTSP). When solving large-scale CTSP with a scale of more than 1000dimensions, their convergence speed and the quality of their solutions are limited. This paper proposes a new hybrid IT?(HIT?) algorithm, which integrates two new strategies, crossover operator and mutation strategy, into the standard IT?. In the iteration process of HIT?, the feasible solution of CTSP is represented by the double chromosome coding, and the random drift and wave operators are used to explore and develop new unknown regions. In this process, the drift operator is executed by the improved crossover operator, and the wave operator is performed by the optimized mutation strategy. Experiments show that HIT? is superior to the known comparison algorithms in terms of the quality solution.
暂无评论