A Wireless Sensor Network(WSN)is constructed with numerous sensors over geographical *** basic challenge experienced while designing WSN is in increasing the network lifetime and use of low *** sensor nodes are resour...
详细信息
A Wireless Sensor Network(WSN)is constructed with numerous sensors over geographical *** basic challenge experienced while designing WSN is in increasing the network lifetime and use of low *** sensor nodes are resource constrained in nature,novel techniques are essential to improve lifetime of nodes in *** energy is considered as an important resource for sensor node which are battery powered *** WSN,energy is consumed mainly while data is being transferred among nodes in the *** research works are carried out focusing on preserving energy of nodes in the network and made network to live ***,this network is threatened by attacks like vampire attack where the network is loaded by fake ***,Dual Encoding Recurrent Neural network(DERNNet)is proposed for classifying the vampire nodes s node in the ***,the Grey Wolf Optimization(GWO)algorithm helps for transferring the data by determining best solutions to optimally select the aggregation points;thereby maximizing battery/lifetime of the network *** proposed method is evaluated with three standard approaches namely Knowledge and Intrusion Detection based Secure Atom Search Routing(KIDSASR),Risk-aware Reputation-based Trust(RaRTrust)model and Activation Function-based Trusted Neighbor Selection(AF-TNS)in terms of various *** existing methods may lead to wastage of energy due to vampire attack,which further reduce the lifetime and increase average energy consumed in the ***,the proposed DERNNet method achieves 31.4%of routing overhead,23%of end-to-end delay,78.6%of energy efficiency,94.8%of throughput,28.2%of average latency,92.4%of packet delivery ratio,85.2%of network lifetime,and 94.3%of classification accuracy.
A potential paradigm called edge computing (EC) has recently come to light that supports internet of things (IoT) applications that are resource allocation with low latency services at the network edge. For scheduling...
详细信息
This research work aims to develop an image captioning system utilizing deep learning techniques. The pre-trained VGG-16 model is employed to extract image features, while an innovative encoder-decoder architecture is...
详细信息
The Internet of Vehicles (IoV) has become one challenging communication technology in the current internet world. IoV enables real-time data exchange between vehicles, road infrastructures, and mobile communication de...
详细信息
Background: Investors estimate how a company's stock or financial instrument will perform in the future, which is known as the stock market prediction. Stock markets are one of the many industries that have benefi...
详细信息
Purpose-The paper aims to introduce an efficient routing algorithm for wireless sensor networks(WSNs).It proposes an improved evaporation rate water cycle(improved ER-WC)algorithm and outlining the systems performance...
详细信息
Purpose-The paper aims to introduce an efficient routing algorithm for wireless sensor networks(WSNs).It proposes an improved evaporation rate water cycle(improved ER-WC)algorithm and outlining the systems performance in improving the energy efficiency of *** proposed technique mainly analyzes the clustering problem of WSNs when huge tasks are ***/methodology/approach-This proposed improved ER-WC algorithm is used for analyzing various factors such as network cluster-head(CH)energy,CH location and CH density in improved *** proposed study will solve the energy efficiency and improve network throughput in ***-This proposed work provides optimal clustering method for Fuzzy C-means(FCM)where efficiency is improved in *** evaluations are conducted to find network lifespan,network throughput,total network residual energy and network *** limitations/implications-The proposed improved ER-WC algorithm has some implications when different energy levels of node are used in *** implications-This research work analyzes the nodes’energy and throughput by selecting correct CHs in intra-cluster *** can possibly analyze the factors such as CH location,network CH energy and CH ***/value-This proposed research work proves to be performing better for improving the network throughput and increases energy efficiency for WSNs.
The evolution of the electrical grid from its early centralized structure to today’s advanced "smart grid" reflects significant technological progress. Early grids, designed for simple power delivery from l...
详细信息
The evolution of the electrical grid from its early centralized structure to today’s advanced "smart grid" reflects significant technological progress. Early grids, designed for simple power delivery from large plants to consumers, faced challenges in efficiency, reliability, and scalability. Over time, the grid has transformed into a decentralized network driven by innovative technologies, particularly artificial intelligence (AI). AI has become instrumental in enhancing efficiency, security, and resilience by enabling real-time data analysis, predictive maintenance, demand-response optimization, and automated fault detection, thereby improving overall operational efficiency. This paper examines the evolution of the electrical grid, tracing its transition from early limitations to the methodologies adopted in present smart grids for addressing those challenges. Current smart grids leverage AI to optimize energy management, predict faults, and seamlessly integrate electric vehicles (EVs), reducing transmission losses and improving performance. However, these advancements are not without limitations. Present grids remain vulnerable to cyberattacks, necessitating the adoption of more robust methodologies and advanced technologies for future grids. Looking forward, emerging technologies such as Digital Twin (DT) models, the Internet of Energy (IoE), and decentralized grid management are set to redefine grid architectures. These advanced technologies enable real-time simulations, adaptive control, and enhanced human–machine collaboration, supporting dynamic energy distribution and proactive risk management. Integrating AI with advanced energy storage, renewable resources, and adaptive access control mechanisms will ensure future grids are resilient, sustainable, and responsive to growing energy demands. This study emphasizes AI’s transformative role in addressing the challenges of the early grid, enhancing the capabilities of the present smart grid, and shaping a secure
Classifying requirements in data-intensive systems based on their interactions can assist the requirements engineering process in becoming more systematic and transparent, resulting in higher requirement compliance an...
详细信息
A Recommender System(RS)is a crucial part of several firms,particularly those involved in *** conventional RS,a user may only offer a single rating for an item-that is insufficient to perceive consumer ***,businesses ...
详细信息
A Recommender System(RS)is a crucial part of several firms,particularly those involved in *** conventional RS,a user may only offer a single rating for an item-that is insufficient to perceive consumer ***,businesses in industries like e-learning and tourism enable customers to rate a product using a variety of factors to comprehend customers’*** the other hand,the collaborative filtering(CF)algorithm utilizing AutoEncoder(AE)is seen to be effective in identifying user-interested ***,the cost of these computations increases nonlinearly as the number of items and users *** triumph over the issues,a novel expanded stacked autoencoder(ESAE)with Kernel Fuzzy C-Means Clustering(KFCM)technique is proposed with two *** the first phase of offline,the sparse multicriteria rating matrix is smoothened to a complete matrix by predicting the users’intact rating by the ESAE approach and users are clustered using the KFCM *** the next phase of online,the top-N recommendation prediction is made by the ESAE approach involving only the most similar user from multiple *** the ESAE_KFCM model upgrades the prediction accuracy of 98.2%in Top-N recommendation with a minimized recommendation generation *** experimental check on the Yahoo!Movies(YM)movie dataset and TripAdvisor(TA)travel dataset confirmed that the ESAE_KFCM model constantly outperforms conventional RS algorithms on a variety of assessment measures.
Cloud is based on the underlying technology of virtualization. Here, the physical servers are divided into multiple virtual servers. Through the technology of virtualization, each virtual server contains virtual machi...
详细信息
暂无评论