Electronic auctions(e-auctions)remove the physical limitations of traditional auctions and bring this mechanism to the general ***,most e-auction schemes involve a trusted auctioneer,which is not always credible in **...
详细信息
Electronic auctions(e-auctions)remove the physical limitations of traditional auctions and bring this mechanism to the general ***,most e-auction schemes involve a trusted auctioneer,which is not always credible in *** studies have applied cryptography tools to solve this problem by distributing trust,but they ignore the existence of *** this paper,a blockchain-based Privacy-Preserving and Collusion-Resistant scheme(PPCR)for double auctions is proposed by employing both cryptography and blockchain technology,which is the first decentralized and collusion-resistant double auction scheme that guarantees bidder anonymity and bid privacy.A two-server-based auction framework is designed to support off-chain allocation with privacy preservation and on-chain dispute resolution for collusion resistance.A Dispute Resolution agreement(DR)is provided to the auctioneer to prove that they have conducted the auction correctly and the result is fair and *** addition,a Concise Dispute Resolution protocol(CDR)is designed to handle situations where the number of accused winners is small,significantly reducing the computation cost of dispute *** experimental results confirm that PPCR can indeed achieve efficient collusion resistance and verifiability of auction results with low on-chain and off-chain computational overhead.
Secure vector dominance is a key cryptographic primitive in secure computational geometry (SCG), determining the dominance relationship of vectors between two participants without revealing their private information. ...
详细信息
Digital image has been used in various fields as an essential carrier. Many color images have been constantly produced since their more realistic description, which takes up much storage space and network bandwidth. T...
详细信息
The article addresses the output-feedback control issue for a class of multi-input multi-output(MIMO)uncertain nonlinear systems with multiple event-triggered mechanisms(ETM).Compared to previous event-triggering stud...
详细信息
The article addresses the output-feedback control issue for a class of multi-input multi-output(MIMO)uncertain nonlinear systems with multiple event-triggered mechanisms(ETM).Compared to previous event-triggering studies,this paper aims to trigger both the output and filtered *** nonlinear dynamics are approximated using fuzzy logic systems(FLSs).Then,a novel kind of state observer has been designed to deal with unmeasurable state problems using the triggered output *** sampled estimated state,the triggered output signal,and the filtered signal are utilized to propose an event-triggering mechanism that consists of sensor-to-observer(SO)and observer-to-controller(OC).An event-triggered output feedback control approach is given inside backstepping control,whereby the filter may be employed to circumvent the issue of the virtual control function not being differentiable at the trigger *** is testified that,according to the Lyapunov stability analysis scheme,all closed-loop signals and the system output are ultimately uniformly constrained by our control ***,the simulation examples are performed to confirm the theoretical findings.
Today's deep learning models face an increasing demand to handle dynamic shape tensors and computation whose shape information remains unknown at compile time and varies in a nearly infinite range at runtime. This...
详细信息
Today's deep learning models face an increasing demand to handle dynamic shape tensors and computation whose shape information remains unknown at compile time and varies in a nearly infinite range at runtime. This shape dynamism brings tremendous challenges for existing compilation pipelines designed for static models which optimize tensor programs relying on exact shape values. This paper presents TSCompiler, an end-to-end compilation framework for dynamic shape models. TSCompiler first proposes a symbolic shape propagation algorithm to recover symbolic shape information at compile time to enable subsequent optimizations. TSCompiler then partitions the shape-annotated computation graph into multiple subgraphs and fine-tunes the backbone operators from the subgraph within a hardware-aligned search space to find a collection of high-performance schedules. TSCompiler can propagate the explored backbone schedule to other fusion groups within the same subgraph to generate a set of parameterized tensor programs for fused cases based on dependence analysis. At runtime, TSCompiler utilizes an occupancy-targeted cost model to select from pre-compiled tensor programs for varied tensor shapes. Extensive evaluations show that TSCompiler can achieve state-of-the-art speedups for dynamic shape models. For example, we can improve kernel efficiency by up to 3.97× on NVIDIA RTX3090, and 10.30× on NVIDIA A100 and achieve up to five orders of magnitude speedups on end-to-end latency.
Malware detection has been a hot spot in cyberspace security and academic research. We investigate the correlation between the opcode features of malicious samples and perform feature extraction, selection and fusion ...
详细信息
Malware detection has been a hot spot in cyberspace security and academic research. We investigate the correlation between the opcode features of malicious samples and perform feature extraction, selection and fusion by filtering redundant features, thus alleviating the dimensional disaster problem and achieving efficient identification of malware families for proper classification. Malware authors use obfuscation technology to generate a large number of malware variants, which imposes a heavy analysis burden on security researchers and consumes a lot of resources in both time and space. To this end, we propose the MalFSM framework. Through the feature selection method, we reduce the 735 opcode features contained in the Kaggle dataset to 16, and then fuse on metadata features(count of file lines and file size)for a total of 18 features, and find that the machine learning classification is efficient and high accuracy. We analyzed the correlation between the opcode features of malicious samples and interpreted the selected features. Our comprehensive experiments show that the highest classification accuracy of MalFSM can reach up to 98.6% and the classification time is only 7.76 s on the Kaggle malware dataset of Microsoft.
The proliferation of internet traffic encryption has become a double-edged sword. While it significantly enhances user privacy, it also inadvertently shields cyber-attacks from detection, presenting a formidable chall...
详细信息
The proliferation of internet traffic encryption has become a double-edged sword. While it significantly enhances user privacy, it also inadvertently shields cyber-attacks from detection, presenting a formidable challenge to cybersecurity. Traditional machine learning and deep learning techniques often fall short in identifying encrypted malicious traffic due to their inability to fully extract and utilize the implicit relational and positional information embedded within data packets. This limitation has led to an unresolved challenge in the cybersecurity community: how to effectively extract valuable insights from the complex patterns of traffic packet transmission. Consequently, this paper introduces the TB-Graph model, an encrypted malicious traffic classification model based on a relational graph attention network. The model is a heterogeneous traffic burst graph that embeds side-channel features, which are unaffected by encryption, into the graph nodes and connects them with three different types of burst edges. Subsequently, we design a relational positional coding that prevents the loss of temporal relationships between the original traffic flows during graph transformation. Ultimately, TB-Graph leverages the powerful graph representation learning capabilities of Relational Graph Attention Network (RGAT) to extract latent behavioral features from the burst graph nodes and edge relationships. Experimental results show that TB-Graph outperforms various state-of-the-art methods in fine-grained encrypted malicious traffic classification tasks on two public datasets, indicating its enhanced capability for identifying encrypted malicious traffic.
With the development of Industry 4.0 and big data technology,the Industrial Internet of Things(IIoT)is hampered by inherent issues such as privacy,security,and fault tolerance,which pose certain challenges to the rapi...
详细信息
With the development of Industry 4.0 and big data technology,the Industrial Internet of Things(IIoT)is hampered by inherent issues such as privacy,security,and fault tolerance,which pose certain challenges to the rapid development of *** technology has immutability,decentralization,and autonomy,which can greatly improve the inherent defects of the *** the traditional blockchain,data is stored in a Merkle *** data continues to grow,the scale of proofs used to validate it grows,threatening the efficiency,security,and reliability of blockchain-based ***,this paper first analyzes the inefficiency of the traditional blockchain structure in verifying the integrity and correctness of *** solve this problem,a new Vector Commitment(VC)structure,Partition Vector Commitment(PVC),is proposed by improving the traditional VC ***,this paper uses PVC instead of the Merkle tree to store big data generated by *** can improve the efficiency of traditional VC in the process of commitment and ***,this paper uses PVC to build a blockchain-based IIoT data security storage mechanism and carries out a comparative analysis of *** mechanism can greatly reduce communication loss and maximize the rational use of storage space,which is of great significance for maintaining the security and stability of blockchain-based IIoT.
The widespread availability of GPS has opened up a whole new market that provides a plethora of location-based ***-based social networks have become very popular as they provide end users like us with several such ser...
详细信息
The widespread availability of GPS has opened up a whole new market that provides a plethora of location-based ***-based social networks have become very popular as they provide end users like us with several such services utilizing GPS through our ***,when users utilize these services,they inevitably expose personal information such as their ID and sensitive location to the *** to untrustworthy servers and malicious attackers with colossal background knowledge,users'personal information is at risk on these ***,many privacy-preserving solutions for protecting trajectories have significantly decreased utility after *** have come up with a new trajectory privacy protection solution that contraposes the area of interest for ***,Staying Points Detection Method based on Temporal-Spatial Restrictions(SPDM-TSR)is an interest area mining method based on temporal-spatial restrictions,which can clearly distinguish between staying and moving ***,our privacy protection mechanism focuses on the user's areas of interest rather than the entire ***,our proposed mechanism does not rely on third-party service providers and the attackers'background knowledge *** test our models on real datasets,and the results indicate that our proposed algorithm can provide a high standard privacy guarantee as well as data availability.
Multiarmed bandit(MAB) models are widely used for sequential decision-making in uncertain environments, such as resource allocation in computer communication systems.A critical challenge in interactive multiagent syst...
Multiarmed bandit(MAB) models are widely used for sequential decision-making in uncertain environments, such as resource allocation in computer communication systems.A critical challenge in interactive multiagent systems with bandit feedback is to explore and understand the equilibrium state to ensure stable and tractable system performance.
暂无评论