Foundation models(FMs) [1] have revolutionized software development and become the core components of large software systems. This paradigm shift, however, demands fundamental re-imagining of software engineering theo...
Foundation models(FMs) [1] have revolutionized software development and become the core components of large software systems. This paradigm shift, however, demands fundamental re-imagining of software engineering theories and methodologies [2]. Instead of replacing existing software modules implemented by symbolic logic, incorporating FMs' capabilities to build software systems requires entirely new modules that leverage the unique capabilities of ***, while FMs excel at handling uncertainty, recognizing patterns, and processing unstructured data, we need new engineering theories that support the paradigm shift from explicitly programming and maintaining user-defined symbolic logic to creating rich, expressive requirements that FMs can accurately perceive and implement.
This paper focuses on the finite-time control(FTC) of the composite formation consensus(CFC)problems for multi-robot systems(MRSs). The CFC problems are firstly proposed for MRSs under the complex network topology of ...
详细信息
This paper focuses on the finite-time control(FTC) of the composite formation consensus(CFC)problems for multi-robot systems(MRSs). The CFC problems are firstly proposed for MRSs under the complex network topology of cooperative or cooperative-competitive networks. Regarding the problems of FTC and CFC on multiple Lagrange systems(MLSs), coupled sliding variables are introduced to deal with the robustness and consistent convergence. Then, the adaptive finite-time protocols are given based on the displacement approaches. With the premised FTC, tender-tracking methods are further developed for the problems of tracking information disparity. Stability analyses of those MLSs mentioned above are clarified with Lyapunov candidates considering the coupled sliding vectors, which provide new verification for tender-tracking systems. Under the given coupled-sliding-variable-based finite-time protocols, MLSs distributively adjust the local formation error to achieve global CFC and perform uniform convergence in time-varying tracking. Finally, simulation experiments are conducted while providing practical solutions for the theoretical results.
While encryption technology safeguards the security of network communications,malicious traffic also uses encryption protocols to obscure its malicious *** address the issues of traditional machine learning methods re...
详细信息
While encryption technology safeguards the security of network communications,malicious traffic also uses encryption protocols to obscure its malicious *** address the issues of traditional machine learning methods relying on expert experience and the insufficient representation capabilities of existing deep learning methods for encrypted malicious traffic,we propose an encrypted malicious traffic classification method that integrates global semantic features with local spatiotemporal features,called BERT-based Spatio-Temporal Features Network(BSTFNet).At the packet-level granularity,the model captures the global semantic features of packets through the attention mechanism of the Bidirectional Encoder Representations from Transformers(BERT)*** the byte-level granularity,we initially employ the Bidirectional Gated Recurrent Unit(BiGRU)model to extract temporal features from bytes,followed by the utilization of the Text Convolutional Neural Network(TextCNN)model with multi-sized convolution kernels to extract local multi-receptive field spatial *** fusion of features from both granularities serves as the ultimate multidimensional representation of malicious *** approach achieves accuracy and F1-score of 99.39%and 99.40%,respectively,on the publicly available USTC-TFC2016 dataset,and effectively reduces sample confusion within the Neris and Virut *** experimental results demonstrate that our method has outstanding representation and classification capabilities for encrypted malicious traffic.
As the adoption of explainable AI(XAI) continues to expand, the urgency to address its privacy implications intensifies. Despite a growing corpus of research in AI privacy and explainability, there is little attention...
详细信息
As the adoption of explainable AI(XAI) continues to expand, the urgency to address its privacy implications intensifies. Despite a growing corpus of research in AI privacy and explainability, there is little attention on privacy-preserving model explanations. This article presents the first thorough survey about privacy attacks on model explanations and their countermeasures. Our contribution to this field comprises a thorough analysis of research papers with a connected taxonomy that facilitates the categorization of privacy attacks and countermeasures based on the targeted explanations. This work also includes an initial investigation into the causes of privacy leaks. Finally, we discuss unresolved issues and prospective research directions uncovered in our analysis. This survey aims to be a valuable resource for the research community and offers clear insights for those new to this domain. To support ongoing research, we have established an online resource repository, which will be continuously updated with new and relevant findings.
With the advancement of the manufacturing industry,the investigation of the shop floor scheduling problem has gained increasing *** Job shop Scheduling Problem(JSP),as a fundamental scheduling problem,holds considerab...
详细信息
With the advancement of the manufacturing industry,the investigation of the shop floor scheduling problem has gained increasing *** Job shop Scheduling Problem(JSP),as a fundamental scheduling problem,holds considerable theoretical research ***,finding a satisfactory solution within a given time is difficult due to the NP-hard nature of the JSP.A co-operative-guided ant colony optimization algorithm with knowledge learning(namely KLCACO)is proposed to address this *** algorithm integrates a data-based swarm intelligence optimization algorithm with model-based JSP schedule knowledge.A solution construction scheme based on scheduling knowledge learning is proposed for *** problem model and algorithm data are fused by merging scheduling and planning knowledge with individual scheme construction to enhance the quality of the generated individual solutions.A pheromone guidance mechanism,which is based on a collaborative machine strategy,is used to simplify information learning and the problem space by collaborating with different machine processing ***,the KLCACO algorithm utilizes the classical neighborhood structure to optimize the solution,expanding the search space of the algorithm and accelerating its *** KLCACO algorithm is compared with other highperformance intelligent optimization algorithms on four public benchmark datasets,comprising 48 benchmark test cases in *** effectiveness of the proposed algorithm in addressing JSPs is validated,demonstrating the feasibility of the KLCACO algorithm for knowledge and data fusion in complex combinatorial optimization problems.
The overgeneralisation may happen because most studies on data publishing for multiple sensitive attributes(SAs)have not considered the personalised privacy ***,sensitive information disclosure may also be caused by t...
详细信息
The overgeneralisation may happen because most studies on data publishing for multiple sensitive attributes(SAs)have not considered the personalised privacy ***,sensitive information disclosure may also be caused by these personalised *** address the matter,this article develops a personalised data publishing method for multiple *** to the requirements of individuals,the new method partitions SAs values into two categories:private values and public values,and breaks the association between them for privacy *** the private values,this paper takes the process of anonymisation,while the public values are released without this *** algorithm is designed to achieve the privacy mode,where the selectivity is determined by the sensitive value frequency and undesirable *** experimental results show that the proposed method can provide more information utility when compared with previous *** theoretic analyses and experiments also indicate that the privacy can be guaranteed even though the public values are known to an *** overgeneralisation and privacy breach caused by the personalised requirement can be avoided by the new method.
PROBLEM Recent years have witnessed the rapid progress of self-supervised language models (LMs)[1],especially large language models (LLMs)[2].LLMs not only achieved state-of-the-art performance on many natural languag...
PROBLEM Recent years have witnessed the rapid progress of self-supervised language models (LMs)[1],especially large language models (LLMs)[2].LLMs not only achieved state-of-the-art performance on many natural language processing tasks,but also captured widespread attention from the public due to their great potential in a variety of real-world applications (***,search engines,writing assistants,etc.)through providing general-purpose intelligent services.A few of the LLMs are becoming foundation models,an analogy to infrastructure,that empower hundreds of downstream applications.
Complementary-label learning(CLL)aims at finding a classifier via samples with complementary *** data is considered to contain less information than ordinary-label *** transition matrix between the true label and the ...
详细信息
Complementary-label learning(CLL)aims at finding a classifier via samples with complementary *** data is considered to contain less information than ordinary-label *** transition matrix between the true label and the complementary label,and some loss functions have been developed to handle this *** this paper,we show that CLL can be transformed into ordinary classification under some mild conditions,which indicates that the complementary labels can supply enough information in most *** an example,an extensive misclassification error analysis was performed for the Kernel Ridge Regression(KRR)method applied to multiple complementary-label learning(MCLL),which demonstrates its superior performance compared to existing approaches.
This paper aims to construct and analyze the conforming and nonconforming virtual element methods for a class of fourth order nonlinear Schrodinger equations with trapped *** mainly consider three types of virtual ele...
详细信息
This paper aims to construct and analyze the conforming and nonconforming virtual element methods for a class of fourth order nonlinear Schrodinger equations with trapped *** mainly consider three types of virtual elements,including H^(2) conforming virtual element,C^(0) nonconforming virtual element and Morley-type nonconforming virtual *** fully discrete schemes are constructed by virtue of virtual element methods in space and modified Crank-Nicolson method in *** prove the mass and energy conservation,the boundedness and the unique solvability of the fully discrete *** introducing a new type of the Ritz projection,the optimal and unconditional error estimates for the fully discrete schemes are presented and ***,two numerical examples are investigated to confirm our theoretical analysis.
The accurate identification of students in need is crucial for governments and colleges to allocate resources more effectively and enhance social equity and educational fairness. Existing approaches to identifying stu...
详细信息
暂无评论