To address the problem of inaccurate prediction of slab quality in continuous casting, an algorithm based on particle swarm optimisation and differential evolution is proposed. The algorithm combines BP neural network...
详细信息
In recent decades, brain tumors have been regarded as a severe illness that causes significant damage to the health of the individual, and finally it results to death. Hence, the Brain Tumor Segmentation and Classific...
详细信息
In recent decades, brain tumors have been regarded as a severe illness that causes significant damage to the health of the individual, and finally it results to death. Hence, the Brain Tumor Segmentation and Classification (BTSC) has gained more attention among researcher communities. BTSC is the process of finding brain tumor tissues and classifying the tissues based on the tumor types. Manual tumor segmentation from is prone to error and a time-consuming task. A precise and fast BTSC model is developed in this manuscript based on a transfer learning-based Convolutional Neural Networks (CNN) model. The utilization of a variant of CNN is because of its superiority in distinct tasks. In the initial phase, the Magnetic Resonance Imaging (MRI) brain images are acquired from the Brain Tumor Image Segmentation Challenge (BRATS) 2019, 2020 and 2021 databases. Then the image augmentation is performed on the gathered images by using zoom-in, rotation, zoom-out, flipping, scaling, and shifting methods that effectively reduce overfitting issues in the classification model. The augmented images are segmented using the layers of the Visual-Geometry-Group (VGG-19) model. Then feature extraction using An Attribute Aware Attention (AWA) methodology is carried out on the segmented images following the segmentation block in the VGG-19 model. The crucial features are then selected using the attribute category reciprocal attention phase. These features are inputted to the Model Agnostic Concept Extractor (MACE) to generate the relevance score between the features for assisting in the final classification process. The obtained relevance scores from the MACE are provided to the max-pooling layer of the VGG-19 model. Then, the final classified output is obtained from the modified VGG-19 architecture. The implemented Relevance score with the AWA-based VGG-19 model is used to classify the tumor as the whole tumor, enhanced tumor, and tumor core. In the classification section, the proposed
Future flying ad-hoc networks (FANETs) need to address issues related to delay and channel interference while ensuring high data transmission accuracy. In this paper, we propose a proximal policy optimization (PPO)-ba...
详细信息
The production of jaggery and white sugar is an essential aspect of the sugarcane industry. This review aims to assess a variety of techniques for estimating sugar content in sugarcane, including laboratory methods, f...
详细信息
Billions of people worldwide are affected by vision impairment majorly caused due to age-related degradation and refractive errors. Diabetic Retinopathy(DR) and Macular Hole(MH) are among the most prevalent senescent ...
详细信息
The precise detection and measurement of dopamine(DA),a crucial neurotransmitter in the human body,plays a significant role in diagnosing,preventing,and treating neurological diseases associated with its levels.A hi...
详细信息
The precise detection and measurement of dopamine(DA),a crucial neurotransmitter in the human body,plays a significant role in diagnosing,preventing,and treating neurological diseases associated with its levels.A highly sensitive DA electrochemical sensor was constructed by combining molybdenum disulfide quantum dots(MSQDs) with multiwalled carbon nanotubes(MWCNTs).The MSQDs were synthesized using the shear exfoliation *** sensors consist of MSQDs with Mo-S edge catalytic centers for the DA redox reaction,and MWCNTs amplify the sensor *** linearity of the sensor for the detection of DA was tested in the presence of ascorbic acid(AA,50 μmol·L-1) and uric acid(UA,200 μmol·L-1),and exhibited linearity from 2 to 966 μmol·L-1of DA with 0.097 μA(mol·L-1)-1sensitivity and a low limit of detection of0.6 μmol·L-1(the ratio between signal and noise,S/N=3).Moreover,the sensitivity and selectivity of the sensor were also studied using *** is no increase in amperometric current after adding the most potentially interfering *** sensor was successfully applied to recover DA in human blood sera ***,machine learning algorithms were operated to aid in the near-precise detection of DA in the heterogeneous mixture containing AA and *** algorithms facilitate the identification and quantification of DA amidst coexisting interferents,including AA,that are commonly present in biological matrices.
This paper proposes a visual image encryption algorithm based on 2D compressive sensing and variable threshold secret sharing, aiming to achieve efficient, secure, and flexible image encryption and decryption. Firstly...
详细信息
With the rise of encrypted traffic,traditional network analysis methods have become less effective,leading to a shift towards deep learning-based *** these,multimodal learning-based classification methods have gained ...
详细信息
With the rise of encrypted traffic,traditional network analysis methods have become less effective,leading to a shift towards deep learning-based *** these,multimodal learning-based classification methods have gained attention due to their ability to leverage diverse feature sets from encrypted traffic,improving classification ***,existing research predominantly relies on late fusion techniques,which hinder the full utilization of deep features within the *** address this limitation,we propose a novel multimodal encrypted traffic classification model that synchronizes modality fusion with multiscale feature ***,our approach performs real-time fusion of modalities at each stage of feature extraction,enhancing feature representation at each level and preserving inter-level correlations for more effective *** continuous fusion strategy improves the model’s ability to detect subtle variations in encrypted traffic,while boosting its robustness and adaptability to evolving network *** results on two real-world encrypted traffic datasets demonstrate that our method achieves a classification accuracy of 98.23% and 97.63%,outperforming existing multimodal learning-based methods.
Self-healing group key distribution (SGKD) protocols guarantee the security of group communications by allowing authorized users to independently recover missed previous session keys from the current broadcast without...
详细信息
In foggy traffic scenarios, existing object detection algorithms face challenges such as low detection accuracy, poor robustness, occlusion, missed detections, and false detections. To address this issue, a multi-scal...
详细信息
In foggy traffic scenarios, existing object detection algorithms face challenges such as low detection accuracy, poor robustness, occlusion, missed detections, and false detections. To address this issue, a multi-scale object detection algorithm based on an improved YOLOv8 has been proposed. Firstly, a lightweight attention mechanism, Triplet Attention, is introduced to enhance the algorithm’s ability to extract multi-dimensional and multi-scale features, thereby improving the receptive capability of the feature maps. Secondly, the Diverse Branch Block (DBB) is integrated into the CSP Bottleneck with two Convolutions (C2F) module to strengthen the fusion of semantic information across different layers. Thirdly, a new decoupled detection head is proposed by redesigning the original network head based on the Diverse Branch Block module to improve detection accuracy and reduce missed and false detections. Finally, the Minimum Point Distance based Intersection-over-Union (MPDIoU) is used to replace the original YOLOv8 Complete Intersection-over-Union (CIoU) to accelerate the network’s training convergence. Comparative experiments and dehazing pre-processing tests were conducted on the RTTS and VOC-Fog datasets. Compared to the baseline YOLOv8 model, the improved algorithm achieved mean Average Precision (mAP) improvements of 4.6% and 3.8%, respectively. After defogging pre-processing, the mAP increased by 5.3% and 4.4%, respectively. The experimental results demonstrate that the improved algorithm exhibits high practicality and effectiveness in foggy traffic scenarios.
暂无评论