咨询与建议

限定检索结果

文献类型

  • 78 篇 会议
  • 37 篇 期刊文献

馆藏范围

  • 115 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 80 篇 工学
    • 28 篇 信息与通信工程
    • 20 篇 计算机科学与技术...
    • 18 篇 控制科学与工程
    • 15 篇 机械工程
    • 14 篇 仪器科学与技术
    • 14 篇 软件工程
    • 9 篇 测绘科学与技术
    • 9 篇 环境科学与工程(可...
    • 8 篇 电气工程
    • 4 篇 光学工程
    • 4 篇 生物工程
    • 3 篇 交通运输工程
    • 2 篇 化学工程与技术
    • 1 篇 力学(可授工学、理...
  • 28 篇 理学
    • 11 篇 物理学
    • 10 篇 数学
    • 6 篇 生物学
    • 3 篇 统计学(可授理学、...
    • 1 篇 化学
    • 1 篇 天文学
    • 1 篇 地球物理学
    • 1 篇 系统科学
  • 9 篇 农学
    • 9 篇 农业资源与环境
  • 9 篇 管理学
    • 6 篇 图书情报与档案管...
    • 3 篇 管理科学与工程(可...
  • 3 篇 艺术学
    • 3 篇 设计学(可授艺术学...
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
    • 2 篇 特种医学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 17 篇 feature extracti...
  • 15 篇 training
  • 9 篇 remote sensing
  • 8 篇 optimization
  • 8 篇 robustness
  • 7 篇 image resolution
  • 6 篇 deep learning
  • 6 篇 task analysis
  • 6 篇 dimensionality r...
  • 6 篇 convolution
  • 6 篇 hyperspectral im...
  • 5 篇 dictionaries
  • 5 篇 semantics
  • 5 篇 signal processin...
  • 5 篇 clustering algor...
  • 5 篇 kernel
  • 5 篇 cluster analysis
  • 4 篇 support vector m...
  • 4 篇 sparse matrices
  • 4 篇 signal resolutio...

机构

  • 16 篇 school of comput...
  • 15 篇 school of comput...
  • 14 篇 school of comput...
  • 9 篇 center for optic...
  • 8 篇 center for optic...
  • 6 篇 unmanned system ...
  • 6 篇 school of comput...
  • 6 篇 faculty of mathe...
  • 5 篇 center for optic...
  • 4 篇 school of cybers...
  • 4 篇 school of comput...
  • 3 篇 the center for o...
  • 3 篇 department of ne...
  • 3 篇 school of comput...
  • 3 篇 school of comput...
  • 3 篇 school of comput...
  • 3 篇 beijing key labo...
  • 2 篇 school of inform...
  • 2 篇 school of mechan...
  • 2 篇 contribution: wr...

作者

  • 54 篇 xuelong li
  • 31 篇 qi wang
  • 29 篇 yuan yuan
  • 24 篇 feiping nie
  • 9 篇 pingkun yan
  • 8 篇 zhen wang
  • 7 篇 li xuelong
  • 7 篇 rong wang
  • 6 篇 rui zhang
  • 5 篇 luoqing li
  • 4 篇 xiaoqiang lu
  • 4 篇 yi tang
  • 4 篇 wang qi
  • 4 篇 junyu gao
  • 4 篇 wang zhen
  • 3 篇 jipeng ouyang
  • 3 篇 xianbin cao
  • 3 篇 nie feiping
  • 3 篇 haiyan zhao
  • 3 篇 di hu

语言

  • 113 篇 英文
  • 2 篇 其他
检索条件"机构=School of Computer Science and Center for OPTical IMagery Analysis and Learning"
115 条 记 录,以下是91-100 订阅
排序:
SCE: A Manifold Regularized Set-Covering Method for Data Partitioning
arXiv
收藏 引用
arXiv 2019年
作者: Li, Xuelong Lu, Quanmao Dong, Yongsheng Tao, Dacheng Fellow IEEE IEEE State Key Laboratory of Transient Optics and Photonics Xi’an Institute of Optics and Precision Mechanics Chinese Academy of Sciences Xi’an710119 China State Key Laboratory of Transient Optics and Photonics Xi’an Institute of Optics and Precision Mechanics Chinese Academy of Sciences Xi’an710119 China University of Chinese Academy of Sciences Beijing100049 China Center for Optical Imagery Analysis and Learning State Key Laboratory of Transient Optics and Photonics Xian Institute of Optics and Precision Mechanics Chinese Academy of Sciences Xian710119 China Information Engineering College Henan University of Science and Technology Luoyang471023 China UBTech Sydney Artificial Intelligence Institute School of Information Technologies in Faculty of Engineering and Information Technologies University of Sydney J12/318 Cleveland St DarlingtonNSW2008 Australia
Cluster analysis plays a very important role in data analysis. In these years, cluster ensemble, as a cluster analysis tool, has drawn much attention for its robustness, stability and accuracy. Many efforts have been ... 详细信息
来源: 评论
Corrigendum to “Manifold Adaptive Kernelized Low-Rank Representation for Semisupervised Image Classification”
收藏 引用
Complexity 2018年 第1期2018卷
作者: Yong Peng Wanzeng Kong Feiwei Qin Feiping Nie School of Computer Science Hangzhou Dianzi University Hangzhou 310018 *** Jiangsu Key Laboratory of Big Data Security & Intelligent Processing Nanjing University of Posts and Telecommunications Nanjing 210023 *** Center for OPTical IMagery Analysis and Learning (OPTIMAL) Northwestern Polytechnical University Xi’an 710072 ***
来源: 评论
Avoiding optimal mean robust PCA/2DPCA with non-greedy 1-norm maximization  25
Avoiding optimal mean robust PCA/2DPCA with non-greedy 1-nor...
收藏 引用
25th International Joint Conference on Artificial Intelligence, IJCAI 2016
作者: Luo, Minnan Nie, Feiping Chang, Xiaojun Yang, Yi Hauptmann, Alexander Zheng, Qinghua Shaanxi Province Key Lab of Satellite-Terrestrial Network Department of Computer Science Xi'An Jiaotong University China School of Computer Science Center for Optical Imagery Analysis and Learning Northwestern Polytechnical University China Centre for Quantum Computation and Intelligent Systems University of Technology Sydney Australia School of Computer Science Carnegie Mellon University PA United States
Robust principal component analysis (PCA) is one of the most important dimension reduction techniques to handle high-dimensional data with outliers. However, the existing robust PCA presupposes that the mean of the da... 详细信息
来源: 评论
Object discovery via cohesion measurement
arXiv
收藏 引用
arXiv 2017年
作者: Guo, Guanjun Wang, Hanzi Zhao, Wan-Lei Yan, Yan Li, Xuelong Fujian Key Laboratory of Sensing and Computing for Smart City School of Information Science and Engineering Xiamen University Xiamen Fujian361005 China Center for Optical Imagery Analysis and Learning State Key Laboratory of Transient Optics and Photonics Xi'an Institute of Optics and Precision Mechanics Chinese Academy of Sciences Xi'an Shaanxi710119 China
Color and intensity are two important components in an image. Usually, groups of image pixels, which are similar in color or intensity, are an informative representation for an object. They are therefore particularly ... 详细信息
来源: 评论
On the effectiveness of least squares generative adversarial networks
arXiv
收藏 引用
arXiv 2017年
作者: Mao, Xudong Li, Qing Xie, Haoran Lau, Raymond Y.K. Wang, Zhen Smolley, Stephen Paul Department of Computer Science City University of Hong Kong Hong Kong Department of Mathematics and Information Technology Education University of Hong Kong Hong Kong Department of Information Systems City University of Hong Kong Hong Kong Center for Optical Imagery Analysis and Learning School of Mechanical Engineering Northwestern Polytechnical University Xian710072 China CodeHatch Corp. EdmontonAB Canada
Unsupervised learning with generative adversarial networks (GANs) has proven to be hugely successful. Regular GANs hypothesize the discriminator as a classifier with the sigmoid cross entropy loss function. However, w... 详细信息
来源: 评论
Temporal Multimodal learning in Audiovisual Speech Recognition
Temporal Multimodal Learning in Audiovisual Speech Recogniti...
收藏 引用
IEEE Conference on computer Vision and Pattern Recognition
作者: Di Hu Xuelong Li Xiaoqiang Lu School of Computer Science and Center for OPTical IMagery Analysis and Learning (OPTIMAL) Northwestern Polytechnical University Xi'an Institute of Optics and Precision Mechanics Chinese Academy of Sciences
In view of the advantages of deep networks in producing useful representation, the generated features of different modality data (such as image, audio) can be jointly learned using Multimodal Restricted Boltzmann Mach... 详细信息
来源: 评论
DESI Strong Lens Foundry I: HST Observations and Modeling with GIGA-Lens
arXiv
收藏 引用
arXiv 2025年
作者: Huang, X. Baltasar, S. Ratier-Werbin, N. Storfer, C. Sheu, W. Agarwal, S. Tamargo-Arizmendi, M. Schlegel, D.J. Aguilar, J. Ahlen, S. Aldering, G. Banka, S. BenZvi, S. Bianchi, D. Bolton, A. Brooks, D. Cikota, A. Claybaugh, T. de la Macorra, A. Dey, A. Doel, P. Edelstein, J. Filipp, A. Forero-Romero, J.E. Gaztañaga, E. Gontcho, S.A. Gontcho Gu, A. Gutierrez, G. Honscheid, K. Jullo, E. Juneau, S. Kehoe, R. Kirkby, D. Kisner, T. Kremin, A. Kwon, K.J. Lambert, A. Landriau, M. Lang, D. Le Guillou, L. Liu, J. Meisner, A. Miquel, R. Moustakas, J. Myers, A.D. Perlmutter, S. Pérez-Ràfols, I. Prada, F. Rossi, G. Rubin, D. Sanchez, E. Schubnell, M. Shu, Y. Silver, E. Sprayberry, D. Suzuki, N. Tarlé, G. Weaver, B.A. Zou, H. Department of Physics & Astronomy University of San Francisco San FranciscoCA94117 United States Physics Division Lawrence Berkeley National Laboratory 1 Cyclotron Road BerkeleyCA94720 United States Department of Physics Complutense University of Madrid Madrid28040 Spain Department of Mathematics Complutense University of Madrid Madrid28040 Spain Institute for Astronomy University of Hawai’i HonoluluHI96822-1897 United States Department of Physics & Astronomy University of California Los Angeles Los AngelesCA90095 United States University of Chicago Department of Astronomy ChicagoIL60615 United States Department of Physics & Astronomy University of Pittsburgh PittsburghPA15260 United States Physics Dept. Boston University 590 Commonwealth Avenue BostonMA02215 United States Department of Electrical Engineering & Computer Sciences University of California Berkeley BerkeleyCA94720 United States Department of Physics & Astronomy University of Rochester 206 Bausch and Lomb Hall P.O. Box 270171 RochesterNY14627-0171 United States Dipartimento di Fisica "Aldo Pontremoli" Università degli Studi di Milano Via Celoria 16 MilanoI-20133 Italy NSF’s National Optical-Infrared Astronomy Research Laboratory TucsonAZ85719 United States Department of Physics & Astronomy University College London Gower Street LondonWC1E 6BT United Kingdom Gemini Observatory NSF’s NOIRLab Casilla 603 La Serena Chile Instituto de Física Universidad Nacional Autónoma de México Circuito de la Investigación Científica Ciudad Universitaria Cd. de MéxicoC. P. 04510 Mexico Space Sciences Laboratory University of California Berkeley 7 Gauss Way BerkeleyCA94720 United States Université de Montréal Physics Department 1375 Av. Thérèse-Lavoie-Roux MontréalQCH2V 0B3 Canada Ciela – Montreal Institute for Astrophysical Data Analysis and Machine Learning 1375 Av. Thérèse-Lavoie-Roux MontréalQCH2V 0B3 Canada Technical University Munich TUM School of Natural Sciences
We present the Dark Energy Spectroscopic Instrument (DESI) Strong Lens Foundry. We discovered ∼ 3500 new strong gravitational lens candidates in the DESI Legacy Imaging Surveys using residual neural networks (ResNet)... 详细信息
来源: 评论
Spatiochromatic Context Modeling for Color Saliency analysis
收藏 引用
IEEE Transactions on Neural Networks and learning Systems 2016年 第6期27卷 1177-1189页
作者: Zhang, Jun Wang, Meng Zhang, Shengping Li, Xuelong Wu, Xindong School of Computer Science and Information Engineering Hefei University of Technology Hefei230009 China School of Computer Science and Technology Harbin Institute of Technology Weihai264209 China State Key Laboratory of Transient Optics and Photonics Center for Optical Imagery Analysis and Learning Xi'An Institute of Optics and Precision Mechanics Xi'an710119 China Department of Computer Science University of Vermont BurlingtonVT05405 United States
Visual saliency is one of the most noteworthy perceptual abilities of human vision. Recent progress in cognitive psychology suggests that: 1) visual saliency analysis is mainly completed by the bottom-up mechanism con... 详细信息
来源: 评论
Statistical physics of human cooperation
arXiv
收藏 引用
arXiv 2017年
作者: Perc, Matjaž Jordan, Jillian J. Rand, David G. Wang, Zhen Boccaletti, Stefano Szolnoki, Attila Faculty of Natural Sciences and Mathematics University of Maribor Koroška cesta 160 MariborSI-2000 Slovenia CAMTP – Center for Applied Mathematics and Theoretical Physics University of Maribor Mladinska 3 MariborSI-2000 Slovenia Department of Psychology Yale University New HavenCT06511 United States Department of Economics Yale University New HavenCT06511 United States School of Management Yale University New HavenCT06511 United States Center for Optical Imagery Analysis and Learning Northwestern Polytechnical University Xi’an710072 China CNR Institute of Complex Systems Via Madonna del Piano 10 Sesto Fiorentino Florence50019 Italy Italian Embassy in Israel 25 Hamered st. Tel Aviv68125 Israel Institute of Technical Physics and Materials Science Centre for Energy Research Hungarian Academy of Sciences P.O. Box 49 BudapestH-1525 Hungary
Extensive cooperation among unrelated individuals is unique to humans, who often sacrifice personal benefits for the common good and work together to achieve what they are unable to execute alone. The evolutionary suc... 详细信息
来源: 评论
Hierarchical CNN for traffic sign recognition
Hierarchical CNN for traffic sign recognition
收藏 引用
IEEE Symposium on Intelligent Vehicle
作者: Xuehong Mao Samer Hijazi Raúl Casas Piyush Kaul Rishi Kumar Chris Rowen Faculty of Electrical and Computer Engineering United States Naval Academy Annapolis MD USA School of Electronic Engineering Xidian University Xi’an China School of Computer and Information Science Hubei Engineering University Xiaogan China Centre for Quantum Computation & Intelligent Systems and the Faculty of Engineering and Information Technology University of Technology Sydney 81 Broadway Street Ultimo NSW Australia Center for Optical Imagery Analysis and Learning (OPTIMAL) State Key Laboratory of Transient Optics and Photonics Xi’an Institute of Optics and Precision Mechanics Chinese Academy of Sciences Xi’an Shaanxi China
The Convolutional Neural Network (CNN) is a breakthrough technique in object classification and pattern recognition. It has enabled computers to achieve performance superior to humans in specialized image recognition ... 详细信息
来源: 评论