咨询与建议

限定检索结果

文献类型

  • 78 篇 会议
  • 37 篇 期刊文献

馆藏范围

  • 115 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 80 篇 工学
    • 28 篇 信息与通信工程
    • 20 篇 计算机科学与技术...
    • 18 篇 控制科学与工程
    • 15 篇 机械工程
    • 14 篇 仪器科学与技术
    • 14 篇 软件工程
    • 9 篇 测绘科学与技术
    • 9 篇 环境科学与工程(可...
    • 8 篇 电气工程
    • 4 篇 光学工程
    • 4 篇 生物工程
    • 3 篇 交通运输工程
    • 2 篇 化学工程与技术
    • 1 篇 力学(可授工学、理...
  • 28 篇 理学
    • 11 篇 物理学
    • 10 篇 数学
    • 6 篇 生物学
    • 3 篇 统计学(可授理学、...
    • 1 篇 化学
    • 1 篇 天文学
    • 1 篇 地球物理学
    • 1 篇 系统科学
  • 9 篇 农学
    • 9 篇 农业资源与环境
  • 9 篇 管理学
    • 6 篇 图书情报与档案管...
    • 3 篇 管理科学与工程(可...
  • 3 篇 艺术学
    • 3 篇 设计学(可授艺术学...
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
    • 2 篇 特种医学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 17 篇 feature extracti...
  • 15 篇 training
  • 9 篇 remote sensing
  • 8 篇 optimization
  • 8 篇 robustness
  • 7 篇 image resolution
  • 6 篇 deep learning
  • 6 篇 task analysis
  • 6 篇 dimensionality r...
  • 6 篇 convolution
  • 6 篇 hyperspectral im...
  • 5 篇 dictionaries
  • 5 篇 semantics
  • 5 篇 signal processin...
  • 5 篇 clustering algor...
  • 5 篇 kernel
  • 5 篇 cluster analysis
  • 4 篇 support vector m...
  • 4 篇 sparse matrices
  • 4 篇 signal resolutio...

机构

  • 16 篇 school of comput...
  • 15 篇 school of comput...
  • 14 篇 school of comput...
  • 9 篇 center for optic...
  • 8 篇 center for optic...
  • 6 篇 unmanned system ...
  • 6 篇 school of comput...
  • 6 篇 faculty of mathe...
  • 5 篇 center for optic...
  • 4 篇 school of cybers...
  • 4 篇 school of comput...
  • 3 篇 the center for o...
  • 3 篇 department of ne...
  • 3 篇 school of comput...
  • 3 篇 school of comput...
  • 3 篇 school of comput...
  • 3 篇 beijing key labo...
  • 2 篇 school of inform...
  • 2 篇 school of mechan...
  • 2 篇 contribution: wr...

作者

  • 54 篇 xuelong li
  • 31 篇 qi wang
  • 29 篇 yuan yuan
  • 24 篇 feiping nie
  • 9 篇 pingkun yan
  • 8 篇 zhen wang
  • 7 篇 li xuelong
  • 7 篇 rong wang
  • 6 篇 rui zhang
  • 5 篇 luoqing li
  • 4 篇 xiaoqiang lu
  • 4 篇 yi tang
  • 4 篇 wang qi
  • 4 篇 junyu gao
  • 4 篇 wang zhen
  • 3 篇 jipeng ouyang
  • 3 篇 xianbin cao
  • 3 篇 nie feiping
  • 3 篇 haiyan zhao
  • 3 篇 di hu

语言

  • 113 篇 英文
  • 2 篇 其他
检索条件"机构=School of Computer Science and Center for OPTical IMagery Analysis and Learning"
115 条 记 录,以下是101-110 订阅
排序:
learning TO DETECT STEREO SALIENCY
LEARNING TO DETECT STEREO SALIENCY
收藏 引用
IEEE International Conference on Multimedia and Expo
作者: Fang Guo Jianbing Shen Xuelong Li Beijing Key Lab of Intelligent Information Technology School of Computer Science Beijing Institute of Technology Center for OPTical IMagery Analysis and Learning (OPTIMAL) State Key Laboratory of Transient Optics and Photonics Xi'an Institute of Optics and Precision Mechanics Chinese Academy of Sciences
This paper develops a novel learning-based method for detecting stereo saliency in stereopair images. The disparity maps computed from stereopair images provide an additional depth cue for stereo saliency detection. T... 详细信息
来源: 评论
A NEW SPARSE FEATURE-BASED PATCH FOR DENSE CORRESPONDENCE
A NEW SPARSE FEATURE-BASED PATCH FOR DENSE CORRESPONDENCE
收藏 引用
IEEE International Conference on Multimedia and Expo
作者: Xiameng Qing Jianbing Shen Xuelong Li Yunde Jia Beijing Key Lab of Intelligent Information Technology School of Computer Science Beijing Institute of Technology Center for OPTical IMagery Analysis and Learning (OPTIMAL) State Key Laboratory of Transient Optics and Photonics Xi'an Institute of Optics and Precision Mechanics Chinese Academy of Sciences
This paper presents a new method to compute the dense correspondences between two images by using the sparse feature-based patches in an energy optimization framework. Many transformation and deformation cues such as ... 详细信息
来源: 评论
Joint optimization toward effective and efficient image search
收藏 引用
IEEE Transactions on Cybernetics 2013年 第6期43卷 2216-2227页
作者: Wei, Shikui Xu, Dong Li, Xuelong Zhao, Yao Institute of Information Science Beijing Jiaotong University Beijing Key Laboratory of Advanced Information Science and Network Technology Beijing 100044 China School of Computer Engineering Nanyang Technological University 639798 Singapore Singapore Center for OPTical IMagery Analysis and Learning State Key Laboratory of Transient Optics and Photonics Xi'An Institute of Optics and Precision Mechanics Xi'an 710119 China Institute of Information Science Beijing Jiaotong University Beijing 100044 China State Key Laboratory of Rail Traffic Control and Safety Beijing 100044 China
The bag-of-words (BoW) model has been known as an effective method for large-scale image search and indexing. Recent work shows that the performance of the model can be further improved by using the embedding method. ... 详细信息
来源: 评论
An adaptive and effective single image dehazing algorithm based on dark channel prior
An adaptive and effective single image dehazing algorithm ba...
收藏 引用
IEEE International Conference on Robotics and Biomimetics
作者: Qingsong Zhu Shuai Yang Pheng Ann Heng Xuelong Li Shenzhen Institutes of Advanced Technology Chinese Advanced of Sciences Shenzhen China Department of Computer Science and Engineering The Chinese University of Hong Kong Hong Kong School of Electronic Engineering Tsinghua University Beijing Centre for OPTical IMagery Analysis and Learning (OPTIMAL) Chinese Academy of Sciences Xi'an Shanxi P.R. China
In this paper, we describe a novel and effective single image enhancement algorithm for haze image. As we observe that, the contrast and intensity of haze image after using dark channel prior approach will unavoidably... 详细信息
来源: 评论
A-Optimal Non-negative Projection for image representation
A-Optimal Non-negative Projection for image representation
收藏 引用
Conference on computer Vision and Pattern Recognition (CVPR)
作者: Haifeng Liu Zheng Yang Zhaohui Wu Xuelong Li College of Computer Science University of Zhejiang Hangzhou Zhejiang China Center for OPTical IMagery Analysis and Learning (OPTIMAL) State Key Laboratory of Transient Optics and Photonics Xian Institute of Optics and Precision Mechanics Chinese Academy of Sciences Xi'an Shaanxi China
As a central problem in computer vision and pattern recognition, data representation has attracted great attention in the past years. Non-negative matrix factorization (NMF) which is a useful data representation metho... 详细信息
来源: 评论
Intrinsic Images Using Optimization
Intrinsic Images Using Optimization
收藏 引用
IEEE Conference on computer Vision and Pattern Recognition
作者: Jianbing Shen Xiaoshan Yang Yunde Jia Xuelong Li Beijing Laboratory of Intelligent Information Technology School of Computer Science Beijing Institute of Technology Center for OPTical IMagery Analysis and Learning (OPTIMAL) State Key Laboratory of Transient Optics and Photonics Xi'an Institute of Optics and Precision Mechanics Chinese Academy of Sciences
In this paper, we present a novel intrinsic image recovery approach using optimization. Our approach is based on the assumption of color characteristics in a local window in natural images. Our method adopts a premise... 详细信息
来源: 评论
Utilizing homotopy for single image superresolution
Utilizing homotopy for single image superresolution
收藏 引用
Asian Conference on Pattern Recognition (ACPR)
作者: Xiaoqiang Lu Pingkun Yan Yuan Yuan Xuelong Li Haoliang Yuan Center for OPTical IMagery Analysis and Learning (OPTIMAL) State Key Laboratory of Transient Optics and Photonics Xian Institute of Optics and Precision Mechanics Chinese Academy of Sciences Xi'an Shaanxi China Faculty of Mathematics and Computer Science Hubei University Wuhan Hubei China
learning an appropriate dictionary is a critical issue for sparse representation based super-resolution algorithms. A good dictionary can well represent an underlying image. In super-resolution algorithms, classical d... 详细信息
来源: 评论
Image denoising via weight regression
Image denoising via weight regression
收藏 引用
Asian Conference on Pattern Recognition (ACPR)
作者: Yi Tang Yuan Yuan Pingkun Yan Xuelong Li Hui Zhou Luoqing Li Center for OPTical IMagery Analysis and Learning (OPTIMAL) State Key Laboratory of Transient Optics and Photonics Xian Institute of Optics and Precision Mechanics Chinese Academy of Sciences Xi'an Shaanxi China Faculty of Mathematics and Computer Science Hubei University Wuhan Hubei China
The core of image denoising is making a trade-off between removing noise and preserving details of noised image. To remove noise, the denoising algorithm based on K-SVD is employed in this paper. Though the power of s... 详细信息
来源: 评论
Local adaptive dictionary based image denoising
Local adaptive dictionary based image denoising
收藏 引用
Asian Conference on Pattern Recognition (ACPR)
作者: Yi Tang Yuan Yuan Pingkun Yan Xuelong Li Hui Zhou Luoqing Li Center for OPTical IMagery Analysis and Learning (OPTIMAL) State Key Laboratory of Transient Optics and Photonics Xian Institute of Optics and Precision Mechanics Chinese Academy of Sciences Xi'an Shaanxi China Faculty of Mathematics and Computer Science Hubei University Wuhan Hubei China
In this paper, the problem of balancing the noise removing and the image details preserving is considered. To remove noise adaptively, local dictionaries and sparse coding techniques are used. For a noised image patch... 详细信息
来源: 评论
Single-image super-resolution based on semi-supervised learning
Single-image super-resolution based on semi-supervised learn...
收藏 引用
Asian Conference on Pattern Recognition (ACPR)
作者: Yi Tang Yuan Yuan Pingkun Yan Xuelong Li Xiaoli Pan Luoqing Li Center for OPTical IMagery Analysis and Learning (OPTIMAL) State Key Laboratory of Transient Optics and Photonics Xian Institute of Optics and Precision Mechanics Chinese Academy of Sciences Xi'an Shaanxi China Faculty of Mathematics and Computer Science Hubei University Wuhan Hubei China
Supervised learning-based methods are popular in single-image super-resolution (SR), and the underlying idea is to learn a map from input low-resolution (LR) images to target high-resolution (HR) images based on a tra... 详细信息
来源: 评论