咨询与建议

限定检索结果

文献类型

  • 78 篇 会议
  • 37 篇 期刊文献

馆藏范围

  • 115 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 80 篇 工学
    • 28 篇 信息与通信工程
    • 20 篇 计算机科学与技术...
    • 18 篇 控制科学与工程
    • 15 篇 机械工程
    • 14 篇 仪器科学与技术
    • 14 篇 软件工程
    • 9 篇 测绘科学与技术
    • 9 篇 环境科学与工程(可...
    • 8 篇 电气工程
    • 4 篇 光学工程
    • 4 篇 生物工程
    • 3 篇 交通运输工程
    • 2 篇 化学工程与技术
    • 1 篇 力学(可授工学、理...
  • 28 篇 理学
    • 11 篇 物理学
    • 10 篇 数学
    • 6 篇 生物学
    • 3 篇 统计学(可授理学、...
    • 1 篇 化学
    • 1 篇 天文学
    • 1 篇 地球物理学
    • 1 篇 系统科学
  • 9 篇 农学
    • 9 篇 农业资源与环境
  • 9 篇 管理学
    • 6 篇 图书情报与档案管...
    • 3 篇 管理科学与工程(可...
  • 3 篇 艺术学
    • 3 篇 设计学(可授艺术学...
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
    • 2 篇 特种医学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 17 篇 feature extracti...
  • 15 篇 training
  • 9 篇 remote sensing
  • 8 篇 optimization
  • 8 篇 robustness
  • 7 篇 image resolution
  • 6 篇 deep learning
  • 6 篇 task analysis
  • 6 篇 dimensionality r...
  • 6 篇 convolution
  • 6 篇 hyperspectral im...
  • 5 篇 dictionaries
  • 5 篇 semantics
  • 5 篇 signal processin...
  • 5 篇 clustering algor...
  • 5 篇 kernel
  • 5 篇 cluster analysis
  • 4 篇 support vector m...
  • 4 篇 sparse matrices
  • 4 篇 signal resolutio...

机构

  • 16 篇 school of comput...
  • 15 篇 school of comput...
  • 14 篇 school of comput...
  • 9 篇 center for optic...
  • 8 篇 center for optic...
  • 6 篇 unmanned system ...
  • 6 篇 school of comput...
  • 6 篇 faculty of mathe...
  • 5 篇 center for optic...
  • 4 篇 school of cybers...
  • 4 篇 school of comput...
  • 3 篇 the center for o...
  • 3 篇 department of ne...
  • 3 篇 school of comput...
  • 3 篇 school of comput...
  • 3 篇 school of comput...
  • 3 篇 beijing key labo...
  • 2 篇 school of inform...
  • 2 篇 school of mechan...
  • 2 篇 contribution: wr...

作者

  • 54 篇 xuelong li
  • 31 篇 qi wang
  • 29 篇 yuan yuan
  • 24 篇 feiping nie
  • 9 篇 pingkun yan
  • 8 篇 zhen wang
  • 7 篇 li xuelong
  • 7 篇 rong wang
  • 6 篇 rui zhang
  • 5 篇 luoqing li
  • 4 篇 xiaoqiang lu
  • 4 篇 yi tang
  • 4 篇 wang qi
  • 4 篇 junyu gao
  • 4 篇 wang zhen
  • 3 篇 jipeng ouyang
  • 3 篇 xianbin cao
  • 3 篇 nie feiping
  • 3 篇 haiyan zhao
  • 3 篇 di hu

语言

  • 113 篇 英文
  • 2 篇 其他
检索条件"机构=School of Computer Science and Center for OPTical IMagery Analysis and Learning"
115 条 记 录,以下是31-40 订阅
排序:
Weighted Hierarchical Sparse Representation for Hyperspectral Target Detection
Weighted Hierarchical Sparse Representation for Hyperspectra...
收藏 引用
IEEE International Symposium on Geoscience and Remote Sensing (IGARSS)
作者: Chenlu Wei Zhiyu Jiang Yuan Yuan School of Computer Science and Center for OPTical IMagery Analysis and Learning (OPTIMAL) Northwestern Polytechnical University Xi'an Shaanxi P. R. China
Hyperspectral target detection has been widely studied in the field of remote sensing. However, background dictionary building issue and the correlation analysis of target and background dictionary issue have not been... 详细信息
来源: 评论
A Novel Unsupervised Change Detection Approach Based On Spectral Transformation For Multispectral Images
A Novel Unsupervised Change Detection Approach Based On Spec...
收藏 引用
IEEE International Conference on Image Processing
作者: Yuelin Zhang Ganchao Liu Yuan Yuan School of Computer Science and Center for OPTical IMagery Analysis and Learning (OPTIMAL) Northwestern Polytechnical University Xi’an Shaanxi P. R. China
Change detection (CD) for multispectral remote sensing images is an important approach to observe the changes of the earth. However, the same object usually has different spectra in multi-temporal images, which is one... 详细信息
来源: 评论
Pixel-Level Self-Paced learning For Super-Resolution
Pixel-Level Self-Paced Learning For Super-Resolution
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Wei Lin Junyu Gao Qi Wang Xuelong Li School of Computer Science and Center for OPTical IMagery Analysis and Learning (OPTIMAL) Northwestern Polytechnical University Xi’an Shaanxi P. R. China
Recently, lots of deep networks are proposed to improve the quality of predicted super-resolution (SR) images, due to its widespread use in several image-based fields. However, with these networks being constructed de...
来源: 评论
Hyperspectral and Multispectral Image Fusion Using Non-Convex Relaxation Low Rank and Total Variation Regularization
Hyperspectral and Multispectral Image Fusion Using Non-Conve...
收藏 引用
IEEE International Symposium on Geoscience and Remote Sensing (IGARSS)
作者: Yue Yuan Qi Wang Xuelong Li School of Computer Science and Center for OPTical IMagery Analysis and Learning (OPTIMAL) Northwestern Polytechnical University Xi'an Shaanxi P. R. China
Hyperspectral (HS) and multispectral (MS) image fusion is an important task to construct an HS image with high spatial and spectral resolutions. In this paper, we present a novel HS and MS fusion method using non-conv... 详细信息
来源: 评论
Bio-inspired representation learning for visual attention prediction
arXiv
收藏 引用
arXiv 2021年
作者: Yuan, Yuan Ning, Hailong Lu, Xiaoqiang The Center for OPTical IMagery Analysis and Learning School of the Computer Science Northwestern Polytechnical University Xi’anShaanxi710072 China The Key Laboratory of Spectral Imaging Technology CAS Xi’an Institute of Optics and Precision Mechanics Chinese Academy of Sciences Xi’anShaanxi710119 China The University of Chinese Academy of Sciences Beijing100049 China
Visual Attention Prediction (VAP) is a significant and imperative issue in the field of computer vision. Most of existing VAP methods are based on deep learning. However, they do not fully take advantage of the low-le... 详细信息
来源: 评论
Automatic ultrasound scanning system based on robotic arm
收藏 引用
science China(Information sciences) 2019年 第5期62卷 35-37页
作者: Qinghua HUANG Jiulong LAN Xuelong LI School of Mechanical Engineering and the Center for Optical Imagery Analysis and LearningNorthwestern Polytechnical University School of Electronic and Information Engineering South China University of Technology School of Computer Science and Center for OPTical IMagery Analysis and Learning (OPTIMAL) Northwestern Polytechnical University
Dear editor,As an indispensable diagnosis-aid technologies, ultrasound (US) examination gains more and more attention in recent years [1]. US could real-time display the 2D images of the region of interest in a way of... 详细信息
来源: 评论
Predicting Cognitive Declines Using Longitudinally Enriched Representations for Imaging Biomarkers
Predicting Cognitive Declines Using Longitudinally Enriched ...
收藏 引用
Conference on computer Vision and Pattern Recognition (CVPR)
作者: Lyujian Lu Hua Wang Saad Elbeleidy Feiping Nie Department of Computer Science Colorado School of Mines Golden Colorado U.S.A. School of Computer Science and Center for OPTical IMagery Analysis and Learning (OPTIMAL) Northwestern Polytechnical University Xi'an P. R. China
With rapid progress in high-throughput genotyping and neuroimaging, researches of complex brain disorders, such as Alzheimer's Disease (AD), have gained significant attention in recent years. Many prediction model... 详细信息
来源: 评论
Listen to the Image
Listen to the Image
收藏 引用
IEEE/CVF Conference on computer Vision and Pattern Recognition
作者: Di Hu Dong Wang Xuelong Li Feiping Nie Qi Wang School of Computer Science and Center for OPTical IMagery Analysis and Learning (OPTIMAL) Northwestern Polytechnical University
Visual-to-auditory sensory substitution devices can assist the blind in sensing the visual environment by translating the visual information into a sound pattern. To improve the translation quality, the task performan... 详细信息
来源: 评论
learning from Synthetic Data for Crowd Counting in the Wild
Learning from Synthetic Data for Crowd Counting in the Wild
收藏 引用
IEEE/CVF Conference on computer Vision and Pattern Recognition
作者: Qi Wang Junyu Gao Wei Lin Yuan Yuan School of Computer Science and Center for OPTical IMagery Analysis and Learning (OPTIMAL) Northwestern Polytechnical University
Recently, counting the number of people for crowd scenes is a hot topic because of its widespread applications (e.g. video surveillance, public security). It is a difficult task in the wild: changeable environment, la... 详细信息
来源: 评论
Deep Multimodal Clustering for Unsupervised Audiovisual learning
Deep Multimodal Clustering for Unsupervised Audiovisual Lear...
收藏 引用
IEEE/CVF Conference on computer Vision and Pattern Recognition
作者: Di Hu Feiping Nie Xuelong Li School of Computer Science and Center for OPTical IMagery Analysis and Learning (OPTIMAL) Northwestern Polytechnical University
The seen birds twitter, the running cars accompany with noise, etc. These naturally audiovisual correspondences provide the possibilities to explore and understand the outside world. However, the mixed multiple object... 详细信息
来源: 评论