Real-time systems are widely implemented in the Internet of Things(IoT) and safety-critical systems, both of which have generated enormous social value. Aiming at the classic schedulability analysis problem in real-ti...
详细信息
Real-time systems are widely implemented in the Internet of Things(IoT) and safety-critical systems, both of which have generated enormous social value. Aiming at the classic schedulability analysis problem in real-time systems, we proposed an exact Boolean analysis based on interference(EBAI) for schedulability analysis in real-time systems. EBAI is based on worst-case interference time(WCIT), which considers both the release jitter and blocking time of the task. We improved the efficiency of the three existing tests and provided a comprehensive summary of related research results in the field. Abundant experiments were conducted to compare EBAI with other related results. Our evaluation showed that in certain cases, the runtime gain achieved using our analysis method may exceed 73% compared to the stateof-the-art schedulability test. Furthermore, the benefits obtained from our tests grew with the number of tasks, reaching a level suitable for practical application. EBAI is oriented to the five-tuple real-time task model with stronger expression ability and possesses a low runtime overhead. These characteristics make it applicable in various real-time systems such as spacecraft, autonomous vehicles, industrial robots, and traffic command systems.
This article presents the equilibrium analysis of a game composed of heterogeneous electric vehicles (EVs) and a power distribution system operator (DSO) as the players, and charging station operators (CSOs) and a tra...
详细信息
Understanding and predicting air quality is pivotal for public health and environmental management, especially in urban areas like Delhi. This study utilizes a comprehensive dataset from the Central Pollution Control ...
详细信息
The increasing use of cloud-based image storage and retrieval systems has made ensuring security and efficiency crucial. The security enhancement of image retrieval and image archival in cloud computing has received c...
详细信息
The increasing use of cloud-based image storage and retrieval systems has made ensuring security and efficiency crucial. The security enhancement of image retrieval and image archival in cloud computing has received considerable attention in transmitting data and ensuring data confidentiality among cloud servers and users. Various traditional image retrieval techniques regarding security have developed in recent years but they do not apply to large-scale environments. This paper introduces a new approach called Triple network-based adaptive grey wolf (TN-AGW) to address these challenges. The TN-AGW framework combines the adaptability of the Grey Wolf Optimization (GWO) algorithm with the resilience of Triple Network (TN) to enhance image retrieval in cloud servers while maintaining robust security measures. By using adaptive mechanisms, TN-AGW dynamically adjusts its parameters to improve the efficiency of image retrieval processes, reducing latency and utilization of resources. However, the image retrieval process is efficiently performed by a triple network and the parameters employed in the network are optimized by Adaptive Grey Wolf (AGW) optimization. Imputation of missing values, Min–Max normalization, and Z-score standardization processes are used to preprocess the images. The image extraction process is undertaken by a modified convolutional neural network (MCNN) approach. Moreover, input images are taken from datasets such as the Landsat 8 dataset and the Moderate Resolution Imaging Spectroradiometer (MODIS) dataset is employed for image retrieval. Further, the performance such as accuracy, precision, recall, specificity, F1-score, and false alarm rate (FAR) is evaluated, the value of accuracy reaches 98.1%, the precision of 97.2%, recall of 96.1%, and specificity of 917.2% respectively. Also, the convergence speed is enhanced in this TN-AGW approach. Therefore, the proposed TN-AGW approach achieves greater efficiency in image retrieving than other existing
With the continuous development of China's financial market and the gradual improvement of the financial system, investors are increasingly interested in participating in investments. At the same time, there is a ...
详细信息
Underwater target detection is an important method for detecting marine organisms. However, due to the image occlusion of underwater targets, blurred water quality, poor lighting conditions, small targets, and complex...
详细信息
Recent years have witnessed the rapid development of service‐oriented computing *** boom of Web services increases software developers'selection burden in developing new service‐based systems such as *** recomme...
详细信息
Recent years have witnessed the rapid development of service‐oriented computing *** boom of Web services increases software developers'selection burden in developing new service‐based systems such as *** recommending appropriate component services for developers to build new mashups has become a fundamental problem in service‐oriented software *** service recom-mendation approaches are mainly designed for mashup development in the single‐round *** is hard for them to effectively update recommendation results according to developers'requirements and behaviours(*** service selection).To address this issue,the authors propose a service bundle recommendation framework based on deep learning,DLISR,which aims to capture the interactions among the target mashup to build,selected(component)services,and the following service to ***,an attention mechanism is employed in DLISR to weigh selected services when rec-ommending a candidate *** authors also design two separate models for learning interactions from the perspectives of content and invocation history,respectively,and a hybrid model called *** on a real‐world dataset indicate that HISR can outperform several state‐of‐the‐art service recommendation methods to develop new mashups iteratively.
While encryption technology safeguards the security of network communications,malicious traffic also uses encryption protocols to obscure its malicious *** address the issues of traditional machine learning methods re...
详细信息
While encryption technology safeguards the security of network communications,malicious traffic also uses encryption protocols to obscure its malicious *** address the issues of traditional machine learning methods relying on expert experience and the insufficient representation capabilities of existing deep learning methods for encrypted malicious traffic,we propose an encrypted malicious traffic classification method that integrates global semantic features with local spatiotemporal features,called BERT-based Spatio-Temporal Features Network(BSTFNet).At the packet-level granularity,the model captures the global semantic features of packets through the attention mechanism of the Bidirectional Encoder Representations from Transformers(BERT)*** the byte-level granularity,we initially employ the Bidirectional Gated Recurrent Unit(BiGRU)model to extract temporal features from bytes,followed by the utilization of the Text Convolutional Neural Network(TextCNN)model with multi-sized convolution kernels to extract local multi-receptive field spatial *** fusion of features from both granularities serves as the ultimate multidimensional representation of malicious *** approach achieves accuracy and F1-score of 99.39%and 99.40%,respectively,on the publicly available USTC-TFC2016 dataset,and effectively reduces sample confusion within the Neris and Virut *** experimental results demonstrate that our method has outstanding representation and classification capabilities for encrypted malicious traffic.
Many Next-Generation consumer electronic devices would be distributed hybrid electronic systems, such as UAVs (Unmanned Aerial Vehicles) and smart electronic cars. The safety and risk control are the key issues for th...
详细信息
Semantic segmentation is an important sub-task for many ***,pixel-level ground-truth labeling is costly,and there is a tendency to overfit to training data,thereby limiting the generalization *** domain adaptation can...
详细信息
Semantic segmentation is an important sub-task for many ***,pixel-level ground-truth labeling is costly,and there is a tendency to overfit to training data,thereby limiting the generalization *** domain adaptation can potentially address these problems by allowing systems trained on labelled datasets from the source domain(including less expensive synthetic domain)to be adapted to a novel target *** conventional approach involves automatic extraction and alignment of the representations of source and target domains *** limitation of this approach is that it tends to neglect the differences between classes:representations of certain classes can be more easily extracted and aligned between the source and target domains than others,limiting the adaptation over all ***,we address:this problem by introducing a Class-Conditional Domain Adaptation(CCDA)*** incorporates a class-conditional multi-scale discriminator and class-conditional losses for both segmentation and ***,they measure the segmentation,shift the domain in a classconditional manner,and equalize the loss over *** results demonstrate that the performance of our CCDA method matches,and in some cases,surpasses that of state-of-the-art methods.
暂无评论