Unmanned and aerial systems as interactors among different system components for communications,have opened up great opportunities for truth data discovery in Mobile Crowd Sensing(MCS)which has not been properly solve...
详细信息
Unmanned and aerial systems as interactors among different system components for communications,have opened up great opportunities for truth data discovery in Mobile Crowd Sensing(MCS)which has not been properly solved in the *** this paper,an Unmanned Aerial Vehicles-supported Intelligent Truth Discovery(UAV-ITD)scheme is proposed to obtain truth data at low-cost communications for *** main innovations of the UAV-ITD scheme are as follows:(1)UAV-ITD scheme takes the first step in employing UAV joint Deep Matrix Factorization(DMF)to discover truth data based on the trust mechanism for an Information Elicitation Without Verification(IEWV)problem in MCS.(2)This paper introduces a truth data discovery scheme for the first time that only needs to collect a part of n data samples to infer the data of the entire network with high accuracy,which saves more communication costs than most previous data collection schemes,where they collect n or kn data ***,we conducted extensive experiments to evaluate the UAV-ITD *** results show that compared with previous schemes,our scheme can reduce estimated truth error by 52.25%–96.09%,increase the accuracy of workers’trust evaluation by 0.68–61.82 times,and save recruitment costs by 24.08%–54.15%in truth data discovery.
With the arrival of the 5G era,wireless communication technologies and services are rapidly exhausting the limited spectrum *** auctions came into being,which can effectively utilize spectrum *** of the complexity of ...
详细信息
With the arrival of the 5G era,wireless communication technologies and services are rapidly exhausting the limited spectrum *** auctions came into being,which can effectively utilize spectrum *** of the complexity of the electronic spectrum auction network environment,the security of spectrum auction can not be *** scholars focus on researching the security of the single-sided auctions,while ignoring the practical scenario of a secure double spectrum auction where participants are composed of multiple sellers and *** begin to design the secure double spectrum auction mechanisms,in which two semi-honest agents are introduced to finish the spectrum auction *** these two agents may collude with each other or be bribed by buyers and sellers,which may create security risks,therefore,a secure double spectrum auction is proposed in this *** traditional secure double spectrum auctions,the spectrum auction server with Software Guard Extensions(SGX)component is used in this paper,which is an Ethereum blockchain platform that performs spectrum auctions.A secure double spectrum protocol is also designed,using SGX technology and cryptographic tools such as Paillier cryptosystem,stealth address technology and one-time ring signatures to well protect the private information of spectrum *** addition,the smart contracts provided by the Ethereum blockchain platform are executed to assist offline verification,and to verify important spectrum auction information to ensure the fairness and impartiality of spectrum ***,security analysis and performance evaluation of our protocol are discussed.
Named in-network computing service (NICS) is a potential computing paradigm emerged recently. Benefitted from the characteristics of named addressing and routing, NICS can be flexibly deployed on NDN router side and p...
详细信息
With the rise of artificial intelligence and cloud computing, machine-learning-as-a-service platforms,such as Google, Amazon, and IBM, have emerged to provide sophisticated tasks for cloud applications. These propriet...
详细信息
With the rise of artificial intelligence and cloud computing, machine-learning-as-a-service platforms,such as Google, Amazon, and IBM, have emerged to provide sophisticated tasks for cloud applications. These proprietary models are vulnerable to model extraction attacks due to their commercial value. In this paper, we propose a time-efficient model extraction attack framework called Swift Theft that aims to steal the functionality of cloud-based deep neural network models. We distinguish Swift Theft from the existing works with a novel distribution estimation algorithm and reference model settings, finding the most informative query samples without querying the victim model. The selected query samples can be applied to various cloud models with a one-time selection. We evaluate our proposed method through extensive experiments on three victim models and six datasets, with up to 16 models for each dataset. Compared to the existing attacks, Swift Theft increases agreement(i.e., similarity) by 8% while consuming 98% less selecting time.
In the fields of intelligent transportation and multi-task cooperation, many practical problems can be modeled by colored traveling salesman problem(CTSP). When solving large-scale CTSP with a scale of more than 1000d...
详细信息
In the fields of intelligent transportation and multi-task cooperation, many practical problems can be modeled by colored traveling salesman problem(CTSP). When solving large-scale CTSP with a scale of more than 1000dimensions, their convergence speed and the quality of their solutions are limited. This paper proposes a new hybrid IT?(HIT?) algorithm, which integrates two new strategies, crossover operator and mutation strategy, into the standard IT?. In the iteration process of HIT?, the feasible solution of CTSP is represented by the double chromosome coding, and the random drift and wave operators are used to explore and develop new unknown regions. In this process, the drift operator is executed by the improved crossover operator, and the wave operator is performed by the optimized mutation strategy. Experiments show that HIT? is superior to the known comparison algorithms in terms of the quality solution.
Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and ***,achieving precise segmentation remains a challenge due to various factors,in...
详细信息
Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and ***,achieving precise segmentation remains a challenge due to various factors,including scattering noise,low contrast,and limited resolution in ultrasound *** existing segmentation models have made progress,they still suffer from several limitations,such as high error rates,low generalizability,overfitting,limited feature learning capability,*** address these challenges,this paper proposes a Multi-level Relation Transformer-based U-Net(MLRT-UNet)to improve thyroid nodule *** MLRTUNet leverages a novel Relation Transformer,which processes images at multiple scales,overcoming the limitations of traditional encoding *** transformer integrates both local and global features effectively through selfattention and cross-attention units,capturing intricate relationships within the *** approach also introduces a Co-operative Transformer Fusion(CTF)module to combine multi-scale features from different encoding layers,enhancing the model’s ability to capture complex patterns in the ***,the Relation Transformer block enhances long-distance dependencies during the decoding process,improving segmentation *** results showthat the MLRT-UNet achieves high segmentation accuracy,reaching 98.2% on the Digital Database Thyroid Image(DDT)dataset,97.8% on the Thyroid Nodule 3493(TG3K)dataset,and 98.2% on the Thyroid Nodule3K(TN3K)*** findings demonstrate that the proposed method significantly enhances the accuracy of thyroid nodule segmentation,addressing the limitations of existing models.
In the wake of rapid advancements in artificial intelligence(AI), we stand on the brink of a transformative leap in data systems. The imminent fusion of AI and DB(AI×DB) promises a new generation of data systems,...
详细信息
In the wake of rapid advancements in artificial intelligence(AI), we stand on the brink of a transformative leap in data systems. The imminent fusion of AI and DB(AI×DB) promises a new generation of data systems, which will relieve the burden on end-users across all industry sectors by featuring AI-enhanced functionalities, such as personalized and automated in-database AI-powered analytics, and selfdriving capabilities for improved system performance. In this paper, we explore the evolution of data systems with a focus on deepening the fusion of AI and DB. We present NeurDB, an AI-powered autonomous data system designed to fully embrace AI design in each major system component and provide in-database AI-powered analytics. We outline the conceptual and architectural overview of NeurDB, discuss its design choices and key components, and report its current development and future plan.
Partial-label learning(PLL) is a typical problem of weakly supervised learning, where each training instance is annotated with a set of candidate labels. Self-training PLL models achieve state-of-the-art performance b...
详细信息
Partial-label learning(PLL) is a typical problem of weakly supervised learning, where each training instance is annotated with a set of candidate labels. Self-training PLL models achieve state-of-the-art performance but suffer from error accumulation problems caused by mistakenly disambiguated instances. Although co-training can alleviate this issue by training two networks simultaneously and allowing them to interact with each other, most existing co-training methods train two structurally identical networks with the same task, i.e., are symmetric, rendering it insufficient for them to correct each other due to their similar limitations. Therefore, in this paper, we propose an asymmetric dual-task co-training PLL model called AsyCo,which forces its two networks, i.e., a disambiguation network and an auxiliary network, to learn from different views explicitly by optimizing distinct tasks. Specifically, the disambiguation network is trained with a self-training PLL task to learn label confidence, while the auxiliary network is trained in a supervised learning paradigm to learn from the noisy pairwise similarity labels that are constructed according to the learned label confidence. Finally, the error accumulation problem is mitigated via information distillation and confidence refinement. Extensive experiments on both uniform and instance-dependent partially labeled datasets demonstrate the effectiveness of AsyCo.
Instance co-segmentation aims to segment the co-occurrent instances among two *** task heavily relies on instance-related cues provided by co-peaks,which are generally estimated by exhaustively exploiting all paired c...
详细信息
Instance co-segmentation aims to segment the co-occurrent instances among two *** task heavily relies on instance-related cues provided by co-peaks,which are generally estimated by exhaustively exploiting all paired candidates in point-to-point ***,such patterns could yield a high number of false-positive co-peaks,resulting in over-segmentation whenever there are mutual *** tackle with this issue,this paper proposes an instance co-segmentation method via tensor-based salient co-peak search(TSCPS-ICS).The proposed method explores high-order correlations via triple-to-triple matching among feature maps to find reliable co-peaks with the help of co-saliency *** proposed method is shown to capture more accurate intra-peaks and inter-peaks among feature maps,reducing the false-positive rate of co-peak *** having accurate co-peaks,one can efficiently infer responses of the targeted *** on four benchmark datasets validate the superior performance of the proposed method.
Recently,weak supervision has received growing attention in the field of salient object detection due to the convenience of ***,there is a large performance gap between weakly supervised and fully supervised salient o...
详细信息
Recently,weak supervision has received growing attention in the field of salient object detection due to the convenience of ***,there is a large performance gap between weakly supervised and fully supervised salient object detectors because the scribble annotation can only provide very limited foreground/background ***,an intuitive idea is to infer annotations that cover more complete object and background regions for *** this end,a label inference strategy is proposed based on the assumption that pixels with similar colours and close positions should have consistent ***,k-means clustering algorithm was first performed on both colours and coordinates of original annotations,and then assigned the same labels to points having similar colours with colour cluster centres and near coordinate cluster ***,the same annotations for pixels with similar colours within each kernel neighbourhood was set *** experiments on six benchmarks demonstrate that our method can significantly improve the performance and achieve the state-of-the-art results.
暂无评论