In the electronic manufacturing industry, accurate detection of PCB defects is crucial as it directly impacts product quality and reliability. The primary challenges in PCB defect detection include missed detections a...
详细信息
To solve the problem that the massive amount of information and real-time processing in the IoT system puts pressure on the computing resources of the whole system, the industry often adopts the computation offloading...
详细信息
The accurate identification of students in need is crucial for governments and colleges to allocate resources more effectively and enhance social equity and educational fairness. Existing approaches to identifying stu...
详细信息
This paper improves the performance of linear prediction (LP) in precise spectral estimation of bone-conducted (BC) speech. Inherently, BC speech contains a wide spectral dynamic range that causes ill conditioning in ...
详细信息
This paper introduces an advanced road damage detection algorithm that effectively addresses the shortcomings of existing models, including limited detection performance and large parameter sizes, by utilizing the YOL...
详细信息
Diabetes retinopathy (DR) is one of the complications of diabetes. Early diagnosis of retinopathy is helpful to avoid vision loss or blindness. The difficulty of this task lies in the significant differences in the si...
详细信息
Data race is one of the most important concurrent anomalies in multi-threaded *** con-straint-based techniques are leveraged into race detection,which is able to find all the races that can be found by any oth-er soun...
详细信息
Data race is one of the most important concurrent anomalies in multi-threaded *** con-straint-based techniques are leveraged into race detection,which is able to find all the races that can be found by any oth-er sound race ***,this constraint-based approach has serious limitations on helping programmers analyze and understand data ***,it may report a large number of false positives due to the unrecognized dataflow propa-gation of the ***,it recommends a wide range of thread context switches to schedule the reported race(in-cluding the false one)whenever this race is exposed during the constraint-solving *** ad hoc recommendation imposes too many context switches,which complicates the data race *** address these two limitations in the state-of-the-art constraint-based race detection,this paper proposes DFTracker,an improved constraint-based race detec-tor to recommend each data race with minimal thread context ***,we reduce the false positives by ana-lyzing and tracking the dataflow in the *** this means,DFTracker thus reduces the unnecessary analysis of false race *** further propose a novel algorithm to recommend an effective race schedule with minimal thread con-text switches for each data *** experimental results on the real applications demonstrate that 1)without removing any true data race,DFTracker effectively prunes false positives by 68%in comparison with the state-of-the-art constraint-based race detector;2)DFTracker recommends as low as 2.6-8.3(4.7 on average)thread context switches per data race in the real world,which is 81.6%fewer context switches per data race than the state-of-the-art constraint based race ***,DFTracker can be used as an effective tool to understand the data race for programmers.
With the advancement of the manufacturing industry,the investigation of the shop floor scheduling problem has gained increasing *** Job shop Scheduling Problem(JSP),as a fundamental scheduling problem,holds considerab...
详细信息
With the advancement of the manufacturing industry,the investigation of the shop floor scheduling problem has gained increasing *** Job shop Scheduling Problem(JSP),as a fundamental scheduling problem,holds considerable theoretical research ***,finding a satisfactory solution within a given time is difficult due to the NP-hard nature of the JSP.A co-operative-guided ant colony optimization algorithm with knowledge learning(namely KLCACO)is proposed to address this *** algorithm integrates a data-based swarm intelligence optimization algorithm with model-based JSP schedule knowledge.A solution construction scheme based on scheduling knowledge learning is proposed for *** problem model and algorithm data are fused by merging scheduling and planning knowledge with individual scheme construction to enhance the quality of the generated individual solutions.A pheromone guidance mechanism,which is based on a collaborative machine strategy,is used to simplify information learning and the problem space by collaborating with different machine processing ***,the KLCACO algorithm utilizes the classical neighborhood structure to optimize the solution,expanding the search space of the algorithm and accelerating its *** KLCACO algorithm is compared with other highperformance intelligent optimization algorithms on four public benchmark datasets,comprising 48 benchmark test cases in *** effectiveness of the proposed algorithm in addressing JSPs is validated,demonstrating the feasibility of the KLCACO algorithm for knowledge and data fusion in complex combinatorial optimization problems.
Deep learning methods have played a prominent role in the development of computer visualization in recent years. Hyperspectral imaging (HSI) is a popular analytical technique based on spectroscopy and visible imaging ...
详细信息
Risk prediction is an important task to ensuring the driving safety of railway trams. Although data-driven intelligent methods are proved to be effective for driving risk prediction, accuracy is still a top concern fo...
详细信息
Risk prediction is an important task to ensuring the driving safety of railway trams. Although data-driven intelligent methods are proved to be effective for driving risk prediction, accuracy is still a top concern for the challenges of data quality which mainly represent as the unbalanced datasets. This study focuses on applying feature extraction and data augmentation methods to achieve effective risk prediction for railway trams, and proposes an approach based on a self-adaptive K-means clustering algorithm and the least squares deep convolution generative adversarial network(LS-DCGAN). The data preprocessing methods are proposed, which include the K-means algorithm to cluster the locations of trams and the extreme gradient boosting recursive feature elimination based feature selection algorithm to retain the key features. The LS-DCGAN model is designed for sparse sample expansion, aiming to address the sample category distribution imbalance problem. The experiments implemented with the public and real datasets show that the proposed approach can reach a high accuracy of 90.69%,which can greatly enhances the tram driving safety.
暂无评论